
The Finiteness Conjecture

Robert Bruner

Department of Mathematics
Wayne State University

Topology Seminar
Universitetet i Bergen

9 August 2011

Robert Bruner (Wayne State University) The Finiteness Conjecture Bergen 1 / 60



Outline

1 The Finiteness Conjecture
The Conjecture
Squaring operations
Iteration
Iteration improved
Jones’s Kervaire class in the 30 stem
No more such examples
Finiteness conjecture revisited

2 Equivariant perspectives
The Bredon and Mahowald root invariants
Easy equivariant proofs

Robert Bruner (Wayne State University) The Finiteness Conjecture Bergen 2 / 60



The Finiteness Conjecture The Conjecture

We will focus entirely on the prime 2 in this talk.

Conjecture (The Finiteness Conjecture)

A Sq0 family

{x ,Sq0(x),Sq0Sq0(x), . . . , (Sq0)n(x), . . .}

in ExtA(F2,F2) =⇒ π∗S detects only a finite number of non-zero
homotopy classes.
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The Finiteness Conjecture The Conjecture

Examples

{h0, h1, h2, h3} detect the Hopf invariant one maps 2, η, ν, and σ. All
higher members of this family die at E2 by the differential
d2(hn+1) = h0h

2
n.

{h2
0, h

2
1, h

2
2, h

2
3, h

2
4, h

2
5} and perhaps h2

6 detect Kervaire invariant one
maps. Hill, Hopkins and Ravenel have shown that the remaining h2

n

cannot be permanent cycles, but we do not yet know the differentials
which might kill them.

{c0, c1} detect ε ∈ π8 and ε1 ∈ π19 while d2ci = h0fi−1 for i ≥ 2.

d2f0 = h2
0e0, f1 survives to at least E5, and d3fi = h1yi−1 for i ≥ 2.

d2e0 = c2
0 = h2

1d0, d3e1 = h1t0 and d2ei = h0xi−1 for i ≥ 2.

d2yi = h0hi+3ri for all i ≥ 0 (note y1 = h4Q3)
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The Finiteness Conjecture The Conjecture

Remark

Minami called this conjecture ‘The new Doomsday Conjecture’. His papers

The iterated transfer analogue of the new doomsday conjecture,
Trans. AMS 351 (1999) 2325–2351

and

The Adams spectral sequence and the triple transfer,
Am J. Math. 117 (1995) 965–985

provide some evidence, using the transfer, that it is true.
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The Finiteness Conjecture The Conjecture

All members of a Sq0-family lie in the same Adams filtration Exts,∗.

Sq0 is a ring homomorphism by the Cartan formula.

The original Doomsday Conjecture was that each filtration of the
Adams spectral sequence detects only a finite number of homotopy
classes.

That was definitively refuted by Mahowald’s ηj family, detected by

the elements h1hj ∈ Ext2,2j+2.

However, these do not form a Sq0-family, since

Sq0(h1hj) = h2hj+1,Sq0(h2hj+1) = h3hj+2, . . .

With a finite number of low dimensional exceptions, the only
elements in Adams filtration 2 which could be non-zero permanent
cycles are the h2

j and the h1hj . Thus, the Sq0-families generated by
the h1hj obey the finiteness conjecture.

The generic Adams differential is d2Q
ix = h0Q

i−1x if i is even.
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The Finiteness Conjecture The Conjecture

Goal

To explain why I have always suspected that the Finiteness Conjecture is
true.

Goal

To show how these methods give easy proofs of some of the results on the
behavior of the Kervaire invariant one elements.

To gain some perspective on the Finiteness Conjecture, some Corollaries
are:

There are only a finite number of Hopf invariant one maps.

There are only a finite number of Kervaire invariant one maps.

Red shift (in K-theory and homotopy theory) is complicated.

So, it is unlikely that we will have a proof in the near future.
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The Finiteness Conjecture Squaring operations

Squaring operations

The cohomology of a cocommutative Hopf algebra, such as the Steenrod
algebra, has natural operations

Sqi : Exts,tA (F2,F2) −→ Exts+i ,2t
A (F2,F2)

for 0 ≤ i ≤ s in the cohomological indexing, or

Q i : Exts,tA (F2,F2) −→ Exts+t−i ,2t
A (F2,F2)

for t − s ≤ i ≤ t in the homological indexing.
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The Finiteness Conjecture Squaring operations

Cohomological indexing:

n 2n 2n + 1 • • • 2n + s

s x Sq0x

•

•
• •
•

•

2s − 1 Sqs−1x

2s Sqsx

Sqi : Exts,t −→ Exts+i ,2t (n = t − s)

//

OO
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The Finiteness Conjecture Squaring operations

Homological indexing:

n 2n 2n + 1 • • • 2n + s

s x Qtx

•

•
• •
•

•

2s − 1 Qn+1x

2s Qnx

Q i : Exts,t −→ Exts+t−i ,2t (n = t − s)

//

OO
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The Finiteness Conjecture Squaring operations

S-algebra structure of the sphere

The product µ : S ∧ S −→ S factors through the homotopy orbits

S ∧ S
µ //

((PPPPPPPPPPPP S

D2S := (S ∧ S)hC2

ξ

77oooooooooooo

Some notation:

For G ⊂ Σr , DGX := (X∧r )hG

Skeleta: D i
2X := S i

+ ×C2 X ∧ X and D i
GX := EG i

+ ×G X∧r

Observe that D i
2S

n = ΣnRPn+i
n , where Pk

n = RPk/RPn−1, the
stunted projective space with cells in dimensions n through k.

Pn = P∞n .
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The Finiteness Conjecture Squaring operations

Homotopy operations

Sn x // S

DGSn DG x // DGS
ξ // S

Robert Bruner (Wayne State University) The Finiteness Conjecture Bergen 15 / 60



The Finiteness Conjecture Squaring operations

Homotopy operations

Sn x // S

DGSn DG x // DGS
ξ // S

Sk

α

OO

α∗(x)

55lllllllllllllllllll
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The Finiteness Conjecture Squaring operations

Cup-i operations

We call the operation ‘cup-i’

Sn x // S

D2S
n D2x // D2S

ξ // S

S2n+i

∪i

OO

∪i (x)

66llllllllllllllll

if
∪i_

��

∈ π2n+iD2S
n

��

π2n+iΣ
nPn

gen ∈ H2n+iD2S
n
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The Finiteness Conjecture Squaring operations

Properties

∪0(x) = x2 and always exists.

∪i : πn −→ π2n+i is detected by Qn+i in Ext

Each cell of D2S
n either defines a ∪i operation or a relation between

lower operations.

For example, ∪1 : πn −→ π2n+1 exists iff n is even.

If n is odd then the 2n + 1 cell of D2S
n = ΣnPn instead gives a

null-homotopy of 2x2.
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The Finiteness Conjecture Squaring operations

Cup-1 of 2 is η

D2S
D22 // D2S

ξ // S

S1

∪1

OO

η

66lllllllllllllllll

This is detected by Sq0(h0) = h1 in Ext.
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The Finiteness Conjecture Squaring operations

Cup-1 of η is not defined

D2S
1

D2η // D2S
ξ // S

S3

@∪1

OO

However, we do have Sq0(h1) = h2 in Ext.
Restricting to the 3-skeleton,
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The Finiteness Conjecture Squaring operations

D1
2S1 D2η //

top

��

D1
2S

ξ // S

S3

ν

66llllllllllllllllll

The attaching map of the 3-cell of ΣP1 has degree 2, and this gives an
Adams spectral sequence differential d2(h2) = h0h

2
1 = 0, and there are no

possible higher differentials, allowing ν to exist.
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The Finiteness Conjecture Squaring operations

Similarly,

D1
2S3 D2ν //

top

��

D1
2S

ξ // S

S7

σ

66llllllllllllllllll

Again, the attaching map has degree 2, and this gives d2(h3) = h0h
2
2 = 0,

and there are no possible higher differentials, allowing σ to exist as well.
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The Finiteness Conjecture Squaring operations

After this, the differential d2(hn+1) = h0h
2
n 6= 0, and no higher Hopf

maps exist.

In this sense, η must exist, while ν and σ are ’gifts’, or low
dimensional accidents.

The 15 cell carrying h4 is a null-homotopy of 2σ2, showing that
2θ3 = 0.

For higher n, we don’t get the implication 2θn = 0 from the
differential d2(hn+1) = h0h

2
n, though, because hn was not a homotopy

class to start with and the story is a bit more complicated.

The boundary of the cell carrying hn decomposes into a part carrying
h0h

2
n and a part carrying operations on h0h

2
n−1, effectively setting 2θn

equal to higher Adams filtration elements which we must analyze.
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The Finiteness Conjecture Squaring operations

Operations on relations

If 2x = 0 we can extend and operate on the extension as before

Sn ∪2 en+1 x // S

DG (Sn ∪2 en+1)
DG x // DGS

ξ // S
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The Finiteness Conjecture Squaring operations

Operations on relations

If 2x = 0 we can extend and operate on the extension as before

Sn ∪2 en+1 x // S

DG (Sn ∪2 en+1)
DG x // DGS

ξ // S

Sk

α

OO

α∗(x)

44jjjjjjjjjjjjjjjjjjjjjjj
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The Finiteness Conjecture Squaring operations

To talk about π∗D2(X ) and H∗D2(X ):

for a space X , Σ∞QX '
∨

r Σ∞DΣr X

(suppress Σ∞ henceforth)

H∗QX is the free Dyer-Lashof module on H∗X

H∗DrX is the summand of weight r , where
I wt(H∗X ) = 1
I wt(ab) = wt(a) + wt(b)
I wt(Q i (a)) = 2wt(a)

the Nishida relations tell us the A-module structure of H∗QX .
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The Finiteness Conjecture Squaring operations

As an application,

Theorem

If θn−1 exists, has order 2 and square 0, then θn exists and has order 2.

Proof: Let N = 2n − 2 and let X = SN ∪2 eN+1 and let x ∈ HNX ,
y ∈ HN+1X be the generators. Let θ : X −→ S be an extension of θn−1 by
a nullhomotopy of 2θn−1.
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The Finiteness Conjecture Squaring operations

The bottom 4 dimensions of H∗D2X and the attaching maps are shown at
left, together with their images under ξD2θn−1 and the detecting elements
in the Adams spectral sequence on the right.

2N

2N + 1

2N + 2

2N + 3

◦

◦

◦

◦

◦

◦

◦

//////

x2 θ2
n−1 h4

n−1 = 0

QN+1x ∪1(θn−1) QN+1(h2
n−1) = 0

xy - h2
n−1hn = 0

QN+2x θn h2
n

y2 θn h2
n

QN+3x - 0
QN+2y - 0

The assumption that θ2
n−1 = 0 means that D2X

θ−→ S factors through the
quotient by the bottom cell. The cell y2 is then unattached and gives θn,
while the cell QN+2y gives a nullhomotopy of 2θn.
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The Finiteness Conjecture Squaring operations

Other operations like h1∪1

There are many other operations than the ∪i . For example, if n = 3
(mod 4), there is an indecomposable homotopy operation ′h1∪′1 detected
by h1Q

n+1 in the Adams spectral sequence. This operation obeys the
relation 2′h1 ∪′1 (x) = 0 and η2‘h1 ∪′1 (x) = 4‘h1 ∪′3 (x).
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The Finiteness Conjecture Squaring operations

h3
1 ∪1 (x)

h2
1 ∪1 (x)

rrrrrrrrrr

x2 h1 ∪1 (x)

rrrrrrrrrr
h2
1 ∪2 (x)

�
�
�
�
�
�
�

◦

◦ h1 ∪3 (x)

�
�
�
�
�
�

◦ ◦ ◦ ◦
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The Finiteness Conjecture Iteration

Iteration
Let x0 := x and xn = Sq0(xn−1) be a Sq0-family.
Suppose x : S t−s −→ S has Adams filtration s.
Then x1 ‘lives’ on the top cell of Σt−sPt

t−s , so lies in the 2t − s stem.
Similarly, x2 ‘lives’ on the top cell of Σ2t−sP2t

2t−s , so lies in the 4t − s
stem.
In general, xi+1 is carried by the top cell of Σ2i t−sP2i t

2i t−s
.

Thus, the stems in which the xi lie are converging to −s 2-adically,
while the cell of projective space on which xi is carried is converging
to 0 2-adically.
The 0 cell of P∞−∞ is attached to every cell below it: Sqi (x−i ) = x0,
so that
for large i , xi will only survive if all s obstructions vanish:
h0Sq1(xi−1),
h1Sq2(xi−1),
〈h1, h0,Sq3(xi−1)〉,
h2Sq4(xi−1), . . ., down to the obstruction involving Sqs(xi−1) = x2

i−1.
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The Finiteness Conjecture Iteration

S t−s
x0 // S

Ds
2S

t−s D2x0 //

��

S

S2t−s

x1

77oooooooooooooo

DD

2
�
�

Ds
2S

2t−s D2x1 //

��

S

S4t−s

x2

77oooooooooooooo

DD

2
�
�
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The Finiteness Conjecture Iteration

Ds
2S

t−s D2x0 //

��

S

S2t−s

x1

77oooooooooooooo

DD

2
�
�

Ds
2S

2t−s D2x1 //

��

S

S4t−s

x2

77oooooooooooooo

DD

2
�
�

Ds
2S

4t−s D2x2 //

��

S etc.

S8t−s

x3

77oooooooooooooo

DD

2
�
�
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The Finiteness Conjecture Iteration improved

Iteration improved

Rather than apply D2 only to xi to get xi+1, we could apply it to the
whole triangle above, and use the natural map D2D2 −→ D4:

Ds
2D

s
2S

t−s //

��

D3s
4 S t−s //

top

��

S

Ds
2S

2t−s

DD

1
�



��
S4t−s

∨
S4t−soo

{{www
ww

ww
ww

∨
k

S4t−s

ddIIIIIIIIII

77

$
!
�
�
�
�
�



�
~

x
t

p
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The Finiteness Conjecture Jones’s Kervaire class in the 30 stem

The classes we could operate upon to reach the Kervaire class in
dimension 30 are

h2
0

Q2
// h2

1

Q4
// h2

2

Q8
// h2

3

Q16
// h2

4

h0
Q1

//

Q0

OO

h1

Q1

??��������

Q2
// h2

Q3

??��������

Q4
// h3

Q7

??��������

Q8
//_______ h4

Q15

??�
�

�
�

The differential d2(h4) = h0h
2
3 means that we cannot use h4 in any simple

way.
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The Finiteness Conjecture Jones’s Kervaire class in the 30 stem

h2
0

Q2
// h2

1

Q4
// h2

2

Q8
// h2

3

Q16
// h2

4

h0
Q1

//

Q0

OO

h1

Q1

??��������

Q2
// h2

Q3

??��������

Q4
// h3

Q7

??��������

Q8
//_______ h4

Q15

??�
�

�
�

Next simplest is Q16(h2
3) or ∪2(θ3). This lives on the top (i.e., 30) cell of

D2
2S14 = Σ14P16

14 :

30

29

28 ◦

◦

◦

This shows that θ4 enforces the relation 2∪1 (θ3) + ηθ2
3 = 0. For it to be a

homotopy class rather than a null-homotopy, this relation would have to
have already been true before θ4 arrived to enforce it. This sounds like
metaphysics, but is really an extension problem. Precisely,
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The Finiteness Conjecture Jones’s Kervaire class in the 30 stem

Consider an Adams resolution of S.

S30

��5
5

5
5

5
5

5
5

5 e30oo

��

S29
⊃oo

��

��

U S R Q O N L
K

I
G

E
C

A
?

Σ14P16
14

��

Σ14P15
14

⊃oo

��

S28

��

⊃oo

S Y1
oo Y2

oo Y3
oo Y4

oo · · ·oo ∗oo

The 30-cell carrying θ4 causes 2 ∪1 (θ3) + ηθ2
3 to be 0 in π∗Y2. It lives

naturally in π∗Y3, and if it were 0 there, it would factor through a point
and θ4 would exist.
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The Finiteness Conjecture Jones’s Kervaire class in the 30 stem

h2
0

Q2
// h2

1

Q4
// h2

2

Q8
// h2

3

Q16
// h2

4

h0
Q1

//

Q0

OO

h1

Q1

??��������

Q2
// h2

Q3

??��������

Q4
// h3

Q7

??��������

Q8
//_______ h4

Q15

??�
�

�
�

Next consider Q16Q7(h3). Write classes in H∗D4S
7 as follows:

Q i for the homology class Q i ι7,

Q iQ j for Q iQ j ι7, and

Q i ∗ Q j , etc., for their products.
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The Finiteness Conjecture Jones’s Kervaire class in the 30 stem

Here are the bottom few cells of D2
4S7.

28

29

30

31

◦

◦

◦

◦

◦

◦ ◦

???????

???????

ι47 θ2
3 h4

3 = 0 5

ι27 ∗ Q8 - h2
3h4 = 0 4

ι27 ∗ Q9 - h2
3Q

9h3 = 0 4

Q8 ∗ Q8 θ4 h2
4 2

ι27 ∗ Q10 - h2
3Q

10h3 = 0 6
Q8 ∗ Q9 - h4Q

9h3 = 0 3
Q16Q8 - h5 1

Q8 ∗ Q8 + ι27 ∗ Q9 is spherical,

the operation it represents takes σ to θ4,

Q16Q8 + ι27 ∗ Q10 is attached by a map of degree 2 to
Q8 ∗ Q8 + ι27 ∗ Q9 , so 2θ4 = 0.
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The Finiteness Conjecture Jones’s Kervaire class in the 30 stem

Manifold realization

D4S
7 = T (7ρ4), the Thom complex of 7ρ4,

Thom isomorphism Φ : H∗D4S
7 −→ H∗BΣ4,

the weight 4 summand of H∗QS0.

‘Extended powers of manifolds and the Adams spectral sequence’
Contemp. Math., 271 (1999), 41–51

gives a dictionary

{x ∈ H∗DrS
n} Ψ−→ {M f−→ BΣr | f∗[M] = Φ(x)}

so that x is spherical iff f ∗(nρr ) = νM and

(α∗ : πn −→ πk) 7→ (N 7→ Ψ̃(h(α))×Σr N r ).

Ψ(Q8 ∗ Q8 + ι27Q
10) is Jones’

S1 × S1#RP2 −→ BΣ4
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The Finiteness Conjecture No more such examples

What have we done? We couldn’t operate successfully on

θ3 = σ2 : S14 −→ S

but by backing up a step, to σ : S7 −→ S we were successful:

D2S
14 //

D2σ
2

""
D4S

7 D4σ // D4S // S

S30

@

ccG
G

G
G

J
<<xxxxxxxx θ4

33hhhhhhhhhhhhhhhhhhhhhhhhhhh
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The Finiteness Conjecture No more such examples

This suggests various strategies for higher Kervaire elements. Look for

D8S
7 D8σ // D8S // S

S62

∃?

OO�
�
� θ5

66lllllllll

D16S
7 D16σ // D16S // S

S126

∃?

OO�
�
� θ6

55lllllllll

but [Jones] there are no spherical classes which contain the classes needed
to produce these elements. In fact, the attaching maps can be reduced to
η, attaching to a cell carrying θ2

4 or θ2
5, resp., but no further.
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The Finiteness Conjecture No more such examples

There is another possibility. I thought for a bit that there might be a nice
reverse symmetry, and we’d find

D16S
3 D16ν // D16S // S

S62

∃B

OO

θ5

55lllllllllllllllllll

but

D32S
3 D32ν // D32S // S

S126

@

OO�
�
� θ6

55lllllllll

and finally

D64S
1

D64η // D64S // S

S126

∃B′

OO

θ6

55llllllllllllllllll

Robert Bruner (Wayne State University) The Finiteness Conjecture Bergen 47 / 60



The Finiteness Conjecture No more such examples

But these meet exactly the same obstructions. (I am fairly certain.)

This strongly suggests

ηθ2
n is the obstruction to θn+1

ηθ2
n is ‘accidentally’ 0 in a couple more cases to allow the last few

Kervaire classes, but

ηθ2
6 6= 0 if θ6 exists, or

ηθ2
5 6= 0 if not.
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The Finiteness Conjecture Finiteness conjecture revisited

As we iterate Sq0, we find that the number of obstructions which
must cancel grows.

Don Davis’ results, saying that the hi act monomorphically on initial
segments of Ext in a range growing with i suggest that the ’stable
obstruction’

h0Sq1 + h1Sq2+ < h1, h0,Sq3 > +h2Sq4 + · · ·

will be nonzero ’generically’.

Nishida’s theorem tells us that the bottom cells of these large
extended powers must map trivially, and it seems likely that this will
extend some distance up from the bottom, setting up a race between
nilpotence at the bottom and Sq0 at the top of the large truncated
extended powers.

The root invariant is often detected by Sq0 in the range we have
seen, but if the Finiteness Conjecture holds, then this process must
continually be interrupted as we iterate the root invariant.
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Equivariant perspectives The Bredon and Mahowald root invariants

The Bredon and Mahowald root invariants
Because of the connection with the root invariant, I want to show you the
equivariant version of the root invariant.

Definition

Extend x : Sn −→ S to x : Sn+kτ −→ S with k maximal. The Bredon
root invariant, B(x) is then the underlying non-equivariant map
B(x) = U(x) : Sn+k −→ S .

The cofiber sequence C2+ −→ S −→ Sτ smashed with Sn+kτ shows
that the obstruction to extending one further is the composite

C2+ ∧ Sn+kτ −→ Sn+kτ x−→ S

which is the adjoint of U(x), so B(x) is always nonzero.

As with Mahowald’s root invariant, it is clearly a coset.

Restricting x to fixed points gives x .
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Theorem (Greenlees and B)

The Bredon root invariant equals the Mahowald root invariant.

See

‘The Bredon-Löffler conjecture’
Experiment. Math. 4 (1995), no. 4, 289–297.
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Theorem

The root invariant at least doubles the stem.

Proof:

Sn x //

∆

��

S

Sn ∧ Sn

x∧x

;;vvvvvvvvv
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Theorem

B(2) = η, B(η) = ν, B(ν) = σ.

Proof: If D is one the the division algebras R, C or H then its double D ′

has an involution whose fixed point set is D. The Hopf construction on D ′

has the Hopf construction on D as its fixed points, and this extension is
maximal.
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Cartan formula

Theorem

Let xi ∈ πni S
0 and B(xi ) ∈ πni+ki

S0, for i = 1, 2. Let k = k1 + k2 and let
i : S−k−1 −→ P−k−1 be the inclusion of the bottom cell of the stunted
projective space P−k−1.

If i∗(B(x1)B(x2)) 6= 0 then B(x1)B(x2) ⊂ B(x1x2).

If i∗(B(x1)B(x2)) = 0 then B(x1x2) lies in a higher stem than does
B(x1)B(x2).

Proof: Certainly, the smash product of extensions of x1 and x2 is an
extension of x1x2. The condition determines whether or not it is maximal.
See

‘Some remarks on the root invariant’
Stable and unstable homotopy (Toronto, ON, 1996),
Fields Inst. Commun. 19 31–37

Robert Bruner (Wayne State University) The Finiteness Conjecture Bergen 58 / 60



Equivariant perspectives Easy equivariant proofs

Thank you
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