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Abstract. My aim with these notes is to quickly get the student started with the Adams
spectral sequence. To see its power requires that some concrete calculations be done. How-
ever, the algebra required can quickly become overwhelming if one starts with the general-
ized Adams spectral sequence. The classical Adams spectral sequence, in contrast, can be
quickly set up and used to do some calculations which would be quite difficult by any other
technique. Further, the classical Adams spectral sequence is still a useful calculational and
theoretical tool, and is an excellent introduction to the general case.

Throughout, I have tried to motivate the ideas with historical remarks, heuristic ex-
planations, and analogy. For prerequisites, the reader should be willing to work in some
category of spectra, though little more than the notion of stabilizing the homotopy types of
spaces will really be needed. In particular, no familiarity with the details of any particular
category of spectra will be assumed. A passing acquaintance with calculations with the
Steenrod algebra will be helpful, though the details will be provided where they are needed,
so a determined novice has a good chance of success.
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CHAPTER 0

History and Introduction.

The Adams spectral sequence is a way of describing the relation between homotopy and
homology. Given

(1) spaces or spectra X and Y , and
(2) a cohomology theory E∗ (or homology theory E∗)

there is a filtration of [X, Y ], the stable homotopy classes of maps from X to Y ,

(1) whose filtration quotients are the E∞ term of a spectral sequence, and
(2) whose E2 term can be computed from E∗X and E∗Y regarded as E∗E = End(E)-

modules (respectively, from E∗X and E∗Y regarded as E∗E-comodules).

Precisely, we have

Exts,tE∗E(E∗Y,E∗X) =⇒ [X, Y ]Et−s

and

Exts,tE∗E
(E∗X,E∗Y ) =⇒ [X, Y ]Et−s

where [X, Y ]E denotes maps from X to Y in an E-localization. Of course, we must address
questions of convergence, but heuristically, this is what the Adams spectral sequence is trying
to do. The cohomological version is simpler to construct, but requires stronger assumptions
in order to identify E2 or prove convergence. Since these assumptions are satisfied in many
interesting cases, we shall mainly concern ourselves with the cohomological version.

0.1. The d and e invariants

The first two layers of the filtration have a very simple description generalizing the degree
of a map and Adams’ e-invariant.

F0 = [X, Y ]
d
−→ Hom(E∗Y,E∗X)

∪

F1 = Ker(d)
e
−→ Ext1(E∗Y,E∗X)

Here, d(f) = f ∗ : E∗Y −→ E∗X, so that if E = HZ is integral cohomology, and X = Y =
Sn, or more generally, if X and Y are n-manifolds, then d(f) ∈ Hom(Z,Z) is the usual degree
of the map f . If f ∈ Ker(d), then the long exact sequence induced by f in E-cohomology
becomes a short exact sequence and

e(f) = {0←− E∗Y ←− E∗Cf ←− E∗X ←− 0} ∈ Ext1(E∗Y,E∗X),

where Cf = Y ∪f CX is the cofiber of f . (We are suppressing the suspension of X in the
short exact sequence above, because we shall need to use homomorphisms of nonzero degree
soon enough; we might as well start now.)
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For example, the Hopf map η : S3 −→ S2 induces the short exact sequence in mod 2
cohomology

{0←− H∗S2 ←− H∗CP 2 ←− H∗S4 ←− 0} ∈ Ext1,0(H∗S2, H∗S4)

which we may describe pictorially by

4

2

Sq
2

Here, each dot represents an F2, the curved vertical line represents the action of the
Steenrod algebra, A = HF

∗
2HF2, and the horizontal arrows represent the action of the

homomorphisms. Since this is a nontrivial extension ofA-modules, η must be stably essential.
We say that this element of Ext1 detects η. To proceed further, we must become more
systematic, but first we would like to describe the historical context in which the Adams
spectral sequence was invented.

0.2. Computing homotopy via Postnikov towers

At the time Adams introduced the Adams spectral sequence, the main technique for
deducing homotopy groups from cohomology was through Postnikov towers. The idea is
simple: the Hurewicz theorem allows us to deduce the bottom nonzero homotopy group
from the homology or cohomology. We ‘kill’ this by taking the fiber of a map to a K(π, n)
which maps this group isomorphically. Such a map can be obtained by attaching cells to
the original space to kill all the homotopy above the bottom, thereby producing a K(π, n),
and taking the map to be the inclusion of our original space into the new one. We then use
the Serre spectral sequence to deduce the cohomology of the fiber and repeat the process.
We prefer cohomology to homology for this because we find it easier to work with modules
over the Steenrod algebra than with comodules over the dual of the Steenrod algebra. This
means that we must use the Universal Coefficient Theorem to deduce the homology from the
cohomology, and then use the Hurewicz theorem to determine the bottom nonzero homotopy
group, so that we may repeat the process.

We also prefer to work with homology and cohomology with field coefficients as far as
possible, and deduce the integral homology only when we are about to apply the Hurewicz
theorem.

Let us apply this method to the sphere, and let us localize at 2 for simplicity. We will
need the mod 2 cohomology of K(Z/2, n) and K(Z, n). These were computed in [14] in 195x
(Cartan seminar?): H∗K(Z/2, n) is the polynomial algebra on the set {SqI(ιn)}, where SqI

is an admissable Steenrod operation of excess less than n, and H∗K(Z, n) is the polynomial
algebra on the subset of those SqI(ιn) where I = (i1, . . . , ik) has ik > 1. Here, SqI(ιn) means
Sqi1Sqi2 · · ·Sqik(ιn).

We know that πnS
n is the first nonzero homotopy group since it is the only nonzero

(reduced) homology group. Thus HnSn = Z as well, and we letX1 = Fiber(Sn −→ K(Z, n)),

2



n+ 4

n+ 2

n+ 1

n

n− 1

n+ 3

n0

0

ιn−1

ιn

ιn−1 ⊗ ιn

Sq4ιn−1

Sq2ιn−1

β

Sq5ιn−1

β

Sq3ιn−1

Unstable, product classes,
affect degrees ≥ 2n− 1.

Figure 0.1. The cohomology Serre spectral sequence for the fibration
K(Z, n− 1) −→ X1 −→ Sn

where the map from Sn to K(Z, n) is an isomorphism on πn, representing a generator of
HnSn. The long exact sequence in homotopy shows that πiX1

∼= πiS
n for i > n and

πiX1 = 0 for i ≤ n. To compute the homotopy groups of X1, we start by computing its
cohomology. We have a fibration

K(Z, n− 1) −→ X1 −→ Sn

whose cohomology Serre spectral sequence has E2 = H∗K(Z, n− 1)⊗H∗Sn and one differ-
ential dn(ιn−1 ⊗ 1) = 1 ⊗ ιn. (See Figure 0.1.) Let us assume that 2n − 1 > n + 4, so that
the class ιn−1 ⊗ ιn does not affect the results in dimensions less than n + 4. The E∞ term
then tells us that

H iX1 =






0 i < n+ 1
<Sq2ι> i = n+ 1
<Sq3ι> i = n+ 2
<Sq4ι> i = n+ 3
<Sq5ι> i = n+ 4
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Unstable, product classes,
affect degrees ≥ 2n+ 1.

Figure 0.2. The cohomology Serre spectral sequence for the fibration
K(Z/2, n) −→ X2 −→ X1

Note that this is simply the kernel of the homomorphism H∗K(Z, n) −→ H∗Sn shifted down
one dimension. Since the mod 2 cohomology Bockstein β = Sq1, and since Sq1Sq2 = Sq3,
we see that the mod 2 homology Bockstein β : Hn+2(X1; Z/2) −→ Hn+1(X1; Z/2) is an
isomorphism, and hence Hn+1(X1; Z) = Z/2. Thus, πn+1S

n = πn+1X1 = Z/2.
Let X2 = Fiber(X1 −→ K(Z/2, n+ 1)), where the map from X1 to K(Z/2, n + 1) is an

isomorphism on πn+1, representing a generator of Hn+1X1. Taking the fiber again, we have
a fibration

K(Z/2, n) −→ X2 −→ X1

whose cohomology Serre spectral sequence has E2 term H∗K(Z/2, n) ⊗ H∗X1. The first
differential must be dn+1(ιn) = Sq2(ι) since X2 was obtained by killing the bottom homo-
topy group of X1. Since the transgression commutes with Steenrod operations, we also
get that dn+2(Sq

1(ιn)) = Sq3(ι) and that dn+3(Sq
2(ιn)) = 0, since Sq2Sq2 = Sq3Sq1 so

that Sq2(Sq2(ι)) = 0 in X1. Also, dn+4(Sq
3(ιn)) = 0 and dn+4(Sq

2Sq1(ιn)) = Sq5(ι) since
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Sq2ιn
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β

Figure 0.3. E∞ term of the cohomology Serre spectral sequence for the fi-
bration K(Z/2, n) −→ X2 −→ X1

Sq2Sq1Sq2(ι) = Sq5(ι) + Sq4Sq1(ι) = Sq5(ι). This gives

H iX2 =





0 i < n+ 2
<Sq2ιn> i = n+ 2
<Sq3ιn> ⊕ <Sq4ι> i = n+ 3

Again we have a nontrivial cohomology Bockstein Hn+2X2 −→ Hn+3X2 and hence a homol-
ogy Bockstein Hn+3X2 −→ Hn+2X2 which is onto, though no longer one-to-one. This gives
πn+2S

n = πn+2X1 = πn+2X2 = Z/2.
Thus far we have found that πn+1S

n = πn+2S
n = Z/2. To compute πn+3S

n by these
methods requires considerably more work, since the 2-primary part of the group turns out
to be Z/8, and therefore involves the tertiary operation β3. To see this carried out quite
effectively, see the book by Mosher and Tangora [32] which has quite unfortuately been
allowed to go out of print.
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0.3. Adams’ innovation

Though we have made some progress, it is clear that the further we go above the connec-
tivity of Sn, the harder the task will become. Adams’ brilliant innovation was quite simple:
rather than kill only the bottom homotopy group at each step, kill all the homotopy which
can be detected in (co)homology. That is, consider a map X −→ K which induces an epi-
morphism in cohomology, where K is an appropriate product of K(Z/p, n)’s. In the stable
range, the cohomology of the fiber will simply be the kernel of the map H∗K −→ H∗X.
Also, in the stable range, H∗K is a free module over the Steenrod algebra. Then, by repeat-
ing this process, we will have constructed an inverse sequence of spaces whose long exact
cohomology sequences will form a free resolution of H∗X over the Steenrod algebra in the
stable range. The resulting inverse sequence gives rise to the spectral sequence described in
the introduction.

Even if we approach them in the most unsophisticated way, the calculations are less
involved. For example, suppose we wish to reproduce the fact that πn+1S

n = πn+2S
n = Z/2.

Let us work stably, so that we may take n = 0. We start with S −→ HZ as before, but
now take Y1 to be the cofiber so that S −→ HZ −→ Y1 induces a short exact sequence of
A-modules. At the next step we take Y2 to be the cofiber of the map Y1 −→ K(Z/2, 2) ∨
K(Z/2, 4) which sends the fundamental classes ι2 and ι4 to Sq2 and Sq4. This is onto in
dimensions 5 and below. The kernel, the cohomology of Y2, in these dimensions is then

H iY2 =





0 i < 4
<Sq2ι2> i = 4

<Sq3ι2> ⊕ <Sq1ι4 + Sq2Sq1ι2> i = 5

The next step in the resolution is the map Y2 −→ K(Z/2, 4) ∨ K(Z/2, 5) which sends the
fundamental classes to Sq2ι2 and Sq1ι4 + Sq2Sq1ι2. The sequence

0←− H∗S ←− H∗HZ←− H∗(K(Z/2, 2) ∨ K(Z/2, 4))←− H∗(K(Z/2, 4) ∨ K(Z/2, 5))

is exact in dimensions less than 6, and provides columns 0, 1, and 2 of the Adams spectral
sequence for the sphere (Figure 1.2), as well as the bottom two nonzero groups in column
3. This is sufficient to show that π0S = Z, that π1S = π2S = Z/2, and that π3S contains a
Z/4.

More significant than this computational efficiency is the fact that this reformulation of
the problem allows us to bring to bear the homological algebra of modules over the Steenrod
algebra, with profound consequences.

Adams’ vanishing and periodicity theorems [3] are theorems in homological algebra.
They allowed a complete analysis of the Image of the J-homomorphism [4, 24], and were
precursors to the nilpotence and periodicity theorems of Devinatz, Hopkins, and Smith [16].

Those nilpotence theorems used the Adams spectral sequence as an essential tool as
follows. Consider the Adams spectral sequence converging to homotopy groups we are in-
terested in. If we can show that the Adams spectral sequence vanishes above some line, and
if powers of an element will always pass this line eventually, as they must if the element has
high enough filtration, then the element must be nilpotent.

The Adams spectral sequence also provides a very clean and calculationally efficient way
to organize the information contained in primary, secondary, tertiary, and higher cohomology
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operations. This is explained in Adams’ paper “On the Non-existence of Elements of Hopf
Invariant One” [2], a paper which every student of algebraic topology should read.
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CHAPTER 1

The Adams Spectral Sequence

We set up the Adams spectral sequence and identify its E2 and E∞ terms. We then give
a brief introduction to the Steenrod algebra, some of its subalgebras, and to the cohomology
of theories we shall later consider.

1.1. Adams resolutions

Let us write H for HFp and A = H∗H for the mod p Steenrod algebra. We will work
with bounded below spectra of finite type. Of course, this means that whenever we make a
construction, it will either be evident that the spectra we construct have these properties, or
we shall have to demonstrate that they do. The reason we want these assumptions is that
we want each cofiber in an Adams resolution to have two properties which will not otherwise
hold simultaneously.

First, its mod p cohomology should be a free module over the Steenrod algebra. This
will hold if it is a wedge (coproduct) of suspensions of H . Second, maps into it should
be determined by their effect in mod p cohomology, and this will hold if it is a product of
suspensions of H . Under the finite type and bounded below hypothesis, the natural map
from the coproduct into the product is a homotopy equivalence, and we can have both these
properties at once.

Definition 1.1.1. An (ordinary mod p) Adams resolution of Y is an inverse sequence

Y ' Y0
i0←− Y1

i1←− Y2
i2←− · · ·

such that for each s = 0, 1, 2, . . .

(1) the cofiber Cis is a wedge of (suspensions of) HFp’s, and
(2) the natural map H∗Cis −→ H∗Ys is an epimorphism.

Lemma 1.1.2. Adams resolutions exist.

Proof: We use induction on s. Since Ys has finite type, the cohomology H∗Ys can be
generated as an A-module by a set of elements {xα ∈ HnαYs} which is finite in each degree.
It follows that the natural map

∨

α

ΣnαHFp −→
∏

α

ΣnαHFp

is an equivalence, so the map Ys −→
∏

α ΣnαHFp representing {xα ∈ HnαYs} can be lifted
to

∨
α

ΣnαHFp. Let Ys+1 −→ Ys be the fiber of this lift. Then (1) and (2) are satisfied by

construction and Ys+1 has finite type, so that the induction can continue. �
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Lemma 1.1.3. For any Adams resolution, the sequence of natural maps

0←− H∗Y ←− H∗Ci0 ←− H∗ΣCi1 ←− H∗Σ2Ci2 ←− · · ·

is a resolution of H∗Y by free A-modules.

Proof: Each cofiber sequence

Ys+1
is−→ Ys

ps
−→ Cis

δs−→ ΣYs+1

induces a short exact sequence in cohomology

0←− H∗Ys
p∗s←− H∗Cis

δ∗s←− H∗ΣYs+1 ←− 0

by condition (2). Suspend them so they may be spliced to form a long exact sequence:

0 H∗Yoo H∗Ci0oo H∗ΣCi1oo

yyyyrrrrrrrrrr
· · ·oo

zzzzvvv
vv

vv
vv

v

H∗ΣY1

ee

eeKKKKKKKKKK

H∗Σ2Y2

ff

ffMMMMMMMMMM

By (1), each H∗ΣsCis is a free A-module. �

1.2. The comparison theorem

As usual in homological algebra, we have a Comparison Theorem.

Theorem 1.2.1. Given Adams resolutions of Y and Z and a map f : Y −→ Z, there is
a map {fi : Yi −→ Zi} of resolutions extending f .

Y

f

��

Y1

f1
��

i0oo Y2

f2
��

i1oo · · ·
i2oo

Z Z1
j0oo Z2

j1oo · · ·
j2oo

That is, f0 = f and js−1fs ' fs−1is for each s. If {fi} and {f̄i} are two such, then they
induce chain homotopic maps of the associated algebraic resolutions.

Proof: There are two key facts. First, Cjs is a coproduct of HFp’s, and hence H∗Cjs is a
free A-module. Second, being locally finite, Cjs is also the product of the same factors, so
that a map into Cjs is determined by the images of the fundamental classes of the factors
and hence by its induced map in cohomology. Thus, for any X,

[X,Cjs]
∼=
−→ HomA(H∗Cjs, H

∗X).(1)

We will use this repeatedly to show maps into Cjs are equal by showing that their induced
homomorphisms in cohomology are equal, and to construct maps by constructing their in-
duced homomorphisms.
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We are given

0 H∗Yoo H∗Ci0oo H∗ΣCi1oo

xxxxrrrrrrrrrr
· · ·oo

zzzzvvv
vv

vv
vv

v

H∗ΣY1

ee

eeKKKKKKKKKK

H∗Σ2Y2

ff

ffMMMMMMMMMM

H∗ΣZ1yy

yyssssssssss
H∗Σ2Z2xx

xxqqqqqqqqqq

0 H∗Zoo

f∗

OO

H∗Cj0oo

f̃∗0

OO�
�
�
�
�
�
�
�
�
�
�

H∗ΣCj1oo

f̃∗1

OO�
�
�
�
�
�
�
�
�
�
�

ffffLLLLLLLLLL

· · ·oo

ddddHHHHHHHHHH

The comparison theorem of homological algebra asserts the existence of homomorphisms f̃ ∗s
lifting f ∗ and unique up to chain homotopy. The isomorphism (1) shows they are induced

by maps f̃s : Cis −→ Cjs. Further, (1) also tells us that the right hand outer square in the
following diagram commutes, because it does so in cohomology.

Cis //

δs ##GG
GG

GG
GG

G

f̃s

��

ΣCis+1

Σf̃s+1

��

Ys

ps

==||||||||

fs

��

ΣYs+1

Σps+1

99sssssssss

Σfs+1

���
�
�
�
�
�

Zs
ps

!!B
BB

BB
BB

B
ΣZs+1

Σps+1

%%KKKKKKKKK

Cjs //

δs
;;wwwwwwwww

ΣCjs+1

We may assume inductively that fs exists making the left square commute in cohomology,
since we are given this for f0 = f . But this square maps into Cjs, so that (1) shows it

also commutes up to homotopy. Thus we have an induced map Σf̃s+1 on the cofiber of the
map ps making the square containing the map δs commute: Σf̃s+1δs = δsf̃s. The inductive
step is completed by noting that the inner square containing the maps ps+1 must commute
by (1) if it does so in cohomology, which it does since it does so after composing with the
monomorphism δ∗s . �
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1.3. The Adams spectral sequence

Definition 1.3.1. The (mod p cohomology) Adams spectral sequence for [X, Y ] is the
spectral sequence of the exact couple

⊕
s

[X, Ys]∗ i //
⊕
s

[X, Ys]∗

pyyrrrrrrrrrr

⊕
s

[X,Cis]∗

δ
eeLLLLLLLLLL

graded so that

Es,t
1 = [X,Cis]t−s = [ΣtX,ΣsCis]

and

Ds,t
1 = [X, Ys]t−s = [ΣtX,ΣsYs].

The map i = ⊕sis∗ has bidegree (s, t) = (−1,−1), p = ⊕sps∗ has bidegree (0, 0), and
δ = ⊕sδs∗ has bidegree (1, 0). An element of Es,t

r is said to have filtration s, total degree
t− s, and internal degree t.

It is traditional and convenient to display the Adams spectral sequence with the geomet-
rically significant total degree t − s increasing horizontally to the right and the filtration s
increasing vertically (see Figure 1.2). The differential dr then maps left 1 and up r.

Theorem 1.3.2. The Adams spectral sequence for [X, Y ] has

Es,t
2 = Exts,tA (H∗Y,H∗X)

and dr : Es,t
r −→ Es+r,t+r−1

r . The spectral sequence is natural in both X and Y . If Y is
bounded below then the spectral sequence converges to [X, Y ∧(p)] where Y ∧(p) is the p-completion

of Y . That is, the groups Es,t
∞ are the filtration quotients of a complete filtration of [X, Y ∧(p)]t−s.

Remark 1.3.3.

(1) HomA(M,N) is graded as follows: elements of Homt
A(M,N) lower codegrees by t.

Thus, if f ∈ [X, Y ]t = [ΣtX, Y ] then f ∗ ∈ Homt
A(H∗Y,H∗X).

(2) The edge homomorphism

[X, Y ]∗ −→ Ext0(H∗Y,H∗X) = Hom(H∗Y,H∗X)

sends a map to the homomorphism it induces in cohomology, as will be evident from
the proof of the theorem. When X = S, this is simply the Hurewicz homomorphism
in mild disguise:

π∗Y = [S, Y ]∗ −→ Hom(H∗Y,Fp) ∼= H∗Y.

(3) We will generally work in a p-complete setting and omit notation for the p-completion,
as we have just done in the preceding remarks.

Proof: As we have already observed in the proof of the Comparison Theorem 1.2.1,

[X,Cis]
∼=
−→ HomA(H∗Cis, H

∗X).
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Similarly, the boundary map of the exact couple, the composite

[X, Ys+1]∗
p

wwppppppppppp

[X,Cis+1]∗ [X,Cis]∗

δ
ffMMMMMMMMMM

is exactly the map HomA(H∗Σs+1Cis+1, H
∗X)←− HomA(H∗ΣsCis, H

∗X) produced by ap-
plying HomA(•, H∗X) to the free resolution associated to the Adams resolution {Ys}. There-
fore, E2 is ExtA(H∗Y,H∗X) by Lemma 1.1.3. This proves the first statement in the theorem.

The differential dr is the composite of δ, r − 1 applications of i−1, and p:

[X, Ys+r]t−s−1
i //

pvvlllllllllllll
· · · i// [X, Ys+1]t−s−1

[X,Cis+r]t−s−1 [X,Cis]t−s

δ

hhPPPPPPPPPPPP

Es+r,t+r−1
1 Es,t

1

proving the second statement in the theorem.
Naturality in X is evident. Naturality in Y follows from the Comparison Theorem 1.2.1.
For the convergence of the spectral sequence, let

Yω = lim
←−

Ys = Fiber(
∏

Ys

Q
(1−is)
−→

∏
Ys)

and consider the natural maps

Y

��

Y1

��

oo Y2

��

oo · · ·oo

Y/Yω Y1/Yωoo Y2/Yωoo · · ·oo

The map {Ys} −→ {Ys/Yω} induces an isomorphism of E1 terms, and hence of the whole
spectral sequence, since the two sequences have the same cofibers,

Cofiber(Ys+1 −→ Ys) ' Cofiber(Ys+1/Yω −→ Ys/Yω).

Thus, it suffices to show

(1) the second spectral sequence is conditionally convergent to [X, Y/Yω], and
(2) Yω ' ∗ when Y is p-complete.

For (1) we need
lim
←−

[X, Y/Yω] = 0

and
lim
←−

1[X, Y/Yω] = 0.

But the Milnor lim
←−

1 exact sequence is

0 −→ lim
←−

1[ΣX, Ys/Yω] −→ [X, lim
←−

(Ys/Yω)] −→ lim
←−

[X, Ys/Yω] −→ 0

13



and since lim
←−

preserves cofibrations,

lim
←−

(Ys/Yω) ' (lim
←−

Ys)/Yω = Yω/Yω ' ∗

showing the middle term is 0, so the outer two must be as well. For (2), we simply need to
show H∗Yω = 0 since Yω will be p-complete when Y is. In the defining cofiber sequence

Yω −→
∏

Ys

Q
(1−is)
−→

∏
Ys

we may replace the products by coproducts since each Ys is locally finite and bounded below
and the connectivity of Ys increases with s by the definition of an Adams resolution. Now
the fact that i∗s = 0 in H∗ shows that

∨
(1− is) is an equivalence, and we are done. (NOT

SO FAST: THIS IS FALSE FOR S or IT’S p-COMPLETION: MORE IS NEEDED. FOR
FINITE Y IT IS TRUE AND NOW p-COMPLETE Y ARE LIMITS OF FINITE Y. HERE
FINITE MEANS FINITE COHOMOLOGY OVER THE p-ADICS IN EACH DEGREE.
CHECK THAT THIS WORKS.) �

For various constructions in the the Adams spectral sequence it will be helpful to have a
geometric characterization of the terms of the spectral sequence. Let us write

Ys,r = Cofiber(Ys+r −→ Ys)

so that we have cofiber sequences

Ys+r −→ Ys −→ Ys,r −→ ΣYs+r

and
Ys+r,p −→ Ys,r+p −→ Ys,r −→ ΣYs+r,p.

Theorem 1.3.4. The maps Ys,r −→ Ys,1 and Ys−r+1,r−1 −→ ΣYs,1 in the preceding cofiber
sequences induce isomorphisms

Es,t
r =

Im([X, Ys,r]t−s −→ [X, Ys,1]t−s)

Im([X, Ys−r+1,r−1]t−s+1 −→ [X, Ys,1]t−s)

=
Im([X, Ys,r]t−s −→ [X, Ys,1]t−s)

Ker([X, Ys,1]t−s −→ [X, Ys−r+1,r]t−s)

The differential dr is induced by lifting to Ys,r and composing with the composite Ys,r −→
ΣYs+r −→ Ys+r,1.

Proof: These are generic descriptions of the Er term of the spectral sequence obtained by
applying [X, •] to an inverse sequence. �

We will find the following characterization of Adams filtration useful.

Theorem 1.3.5. A map f ∈ [X, Y ] has Adams filtration s iff it factors as the composite
of s maps which are 0 in cohomology.

Proof: Suppose f has Adams filtration s. Then f lifts to Ys, where

Y ←− Y1 ←− · · · ←− Ys ←− · · ·

14



is an Adams resolution. Thus, f is the composite of the s − 1 maps Y ←− Y1 · · · ←− Ys−1

and the map Ys−1 ←− Ys ←− X.
Conversely, suppose f factors as fs · · · f2f1 with each fi : Xi −→ Xi−1 inducing 0 in

cohomology. Then by induction, there are maps f̃i : Xi −→ Yi making the following diagram
commute

Y X1

f̃1
���
�
�

f1oo X2

f̃2
���
�
�

f2oo · · ·oo X

f̃s

���
�
�

fsoo

Y Y1
oo Y2

oo · · ·oo Ysoo

(where f̃0 = 1Y ) since maps into Yi/Yi+1 are determined by their induced map in cohomol-
ogy, and each f ∗i = 0 in cohomology. �

1.4. The Milnor basis for the Steenrod algebra

So that the examples are easy to check and to follow, here is a quick introduction to
the Steenrod algebra expressed in terms of the Milnor basis. For proofs and more complete
results, Milnor’s original paper [27] is an excellent source.

Milnor analyzed the mod 2 Steenrod algebra as follows. Since the indecomposables of
A∗ are dual to the primitives of A, the first task is to find these. He showed they are the
Qi, i ≥ 0, given by

Q0 = Sq1(2)

Qi = [Sq2i

, Qi−1] if i > 0(3)

This means that A∗ is generated by the duals ξi+1 of the Qi. The remarkable fact is that
they freely generate: A∗ = F2[ξ1, ξ2, . . .]. Now it suffices to determine the coproducts on the
ξi, and Milnor showed they have the simple form

ψ(ξr) =

r∑

i=0

ξ2i

r−i ⊗ ξi

Now we can dualize back: the monomials ξr11 . . . ξrkk are a basis for A∗, and so their duals
Sq(R), R = (r1, . . . , rk), form a basis for A. Note that the degree of Sq(R) is Σ(2i − 1)ri.

It is not hard to check that if R = (r), i.e., (r, 0, 0, . . .), then Sq(R) = Sqr, so we
sometimes write SqR or Sqr1,...,rk for Sq(R) for consistency of appearance. In charts of
resolutions or other highly detailed contexts, we will abbreviate Sq(R) to (R) to conserve
space. Note that this is not the same as the composite Sqr1Sqr2 · · ·Sqrk .

The coproduct on A is quite simple:

ψ(Sq(R)) =
∑

R1+R2=R

Sq(R1)⊗ Sq(R2)

where sequences are added termwise, since this is dual to the multiplication of monomials:

ξR1ξR2 = ξR1+R2.

15



To describe the product on A, we need to determine all monomials ξT whose coproduct
can contain a term ξR ⊗ ξS. This can be done in closed form, in contrast to the need to
apply the Adem relations recursively when using the admissable basis. The formula is

Sq(R)Sq(S) =
∑

R(X)=R
S(X)=S

b(X)T (X)

summed over all matrices of nonnegative integers

X =




∗ x01 x02 · · ·
x10 x11 x12 · · ·
x20 x21 x22 · · ·
...

...
...


(4)

with (0, 0) entry omitted, whose row sum R(X) = R and column sum S(X) = S, where

R(X)r = Σ2ixri(5)

S(X)r = Σxir.(6)

The coefficient

b(X) =
∏

r

(xr0, xr−1,1, . . . , x0r) (mod 2)

is the product of multinomial coefficients, and the term

T (X)r =
∑

xi,r−i.

The computation is enormously simplified by the fact that the multinomial coefficient
(a1, a2, . . . , ak) ≡ 0 (mod 2) if and only if some power of 2 occurs in the base 2 expansions
of at least two of the integers ai. If you have not seen this fact, it follows by rewriting

(a1, . . . , ak) = (a1, a2)(a1 + a2, a3)(a1 + a2 + a3, a4) · · · (a1 + · · ·+ ak−1, ak)

so that we need consider only binomial coefficients (a, b). Now, in the polynomial ring F2[x, y]
consider the coefficient of the term xayb in (x + y)(a+b). Writing a = Σai2

i and b = Σbi2
i

and using the fact that (x+ y)2i

= x2i

+ y2i

, we see that (a, b) ≡
∏

(ai, bi) (mod 2). This
leaves only four cases to consider: (0, 0) = (0, 1) = (1, 0) = 1, while (1, 1) = 2!/1!1! = 2 ≡ 0
(mod 2). If we replace 2 by p, the same argument goes through to show that (a, b) is nonzero
(mod p) iff each ai + bi < p.

When performing the multiplication, there is a natural order in which to generate the
matrices X, namely reverse lexicographic in the rows, where the rows are themselves ordered
reverse lexicographically. For example, to compute Sq(4, 2)Sq(2, 1), the possible entries for
row 1 are ordered as

(4, 0, 0) < (2, 1, 0) < (0, 2, 0) < (0, 0, 1)

and those for row 2 as

(2, 0, 0) < (0, 1, 0)

The matrices and their contributions to the product are then, in order,

16



(1)
2 1

4 0 0 (4, 2)(2, 0, 1) Sq(6, 3) = Sq(6, 3)
2 0 0

(2)
1 1

2 1 0 (2, 1)(2, 1, 1) Sq(3, 4) = 0
2 0 0

(3)
0 1

0 2 0 (0, 0)(2, 2, 1) Sq(0, 5) = 0
2 0 0

(4)
2 0

0 0 1 (0, 2)(2, 0, 0)(0, 1) Sq(2, 2, 1) = Sq(2, 2, 1)
2 0 0

(5)
1 1

4 0 0 (4, 1)(0, 0, 1)(1, 0) Sq(5, 1, 1) = Sq(5, 1, 1)
0 1 0

(6)
0 1

2 1 0 (2, 0)(0, 1, 1)(1, 0) Sq(2, 2, 1) = 0
0 1 0

(7)
1 0

0 0 1 (0, 1)(0, 0, 0)(1, 1) Sq(1, 0, 2) = 0
0 1 0

The multinomial coefficients (2,1,1), (2,2,1), (0,1,1) and (0,1,1,0) in the second, third,
sixth and seventh matrices are zero mod 2, since the entries in (2,1,1), (0,1,1) and (0,1,1,0)=(1,1)
share a 1 bit, while the entries in (2,2,1) share a 2 bit. Thus the first, fourth and fifth are
the terms with nonzero coefficients, and we find that

Sq(4, 2)Sq(2, 1) = Sq(6, 3) + Sq(2, 2, 1) + Sq(5, 1, 1).

One virtue of this ordering for hand calculation is that you start by writing R down the
left edge and S along the top, and then proceed to distribute each ri across its row, limited
by the amount available at the top. When a row is distributed as far as possible to the right,
at the next step you return it to its starting state, (ri, 0, . . .) and advance the next row one
step.

1.5. A minimal resolution of the Steenrod algebra in low degrees

Figure 1.1 is a minimal resolution of F2 over A through t−s = 13. Since the resolution is
minimal, its free generators are dual to a basis for ExtA(F2,F2), which is displayed in Figure
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1.2 with the duality given in Figure 1.3. In the chart (Figure 1.2) each dot represents an F2

summand and the three types of lines represent multiplication by h0, h1 and h2.
The resolution was produced by the computer programs described in Chapter 10. There

are many other ways of computing ExtA(F2,F2) of course. An explicit resolution has the
advantage of carrying a lot of additional information, such as products and Massey products.
In this range the Adams spectral sequence for the mod 2 homotopy groups of spheres has
no differentials so that the chart in Figure 1.2 gives nearly complete information on the
2-primary part of the homotopy groups of spheres through dimension 13.

Several relations can be read off from the resolution, as will be explained carefully in
Section 2.4. Briefly, suppose a and b are cocycles dual to elements α and β of the resolution,
respectively: a(α) = 1 and b(β) = 1. If d(α) contains Sq2i

(β), then, when we express
hib in terms of a basis containing a, the coefficient of a will be 1. For example, h2

0 is
dual to η00 since h0 is dual to η0 and d(η00) contains the term Sq1(η0). Thus, the relation
h2(h

2
0) = h1(h

2
1) = h0(h0h2) follows from the differential

d(η111) = Sq4η00 + Sq2η11 + Sq1η02

in bidegree (s, t) = (3, 6): each of these three products is dual to η111 by the prescription
above. This is reflected in the chart (Figure 1.2) by the fact that the diagonal, vertical and
dashed lines meet at s = 3, t− s = 3. Similarly, but not visible in the chart, h3

2 = h2
1h3, the

i = 1 instance of a general relation h3
i+1 = h2

ihi+2 which we shall deduce from the i = 0 case
in Chapter 4. Figure 1.2 also displays the relation h2

1P
1h1 = h2

0P
1h2, which is deduced in

the same way.

1.6. A hierarchy of homology theories and operations

We also obtain very nice descriptions of the homology and cohomology of some useful
spectra in terms of the Milnor basis.

Let us define subalgebras of the mod 2 Steenrod algebra A,

E(n) = E[Q0, . . . , Qn], and

A(n) = <Sq1, . . . , Sq2n

> ,

the exterior algebra generated by Q0 through Qn, and the subalgebra generated by Sq2i

,
i ≤ n, respectively. These are finite sub Hopf algebras of A with duals

E(n)∗ = E[ξ̄1, . . . , ξ̄n+1] and

A(n)∗ = A∗/(ξ̄
2n+1

1 , ξ̄2n

2 , . . . , ξ̄2
n+1, ξ̄n+2, . . .)

where ξ̄i is the conjugate of ξi. Note thatA∗ could equally well be described as the polynomial
algebra on the ξ̄i with coproduct

ψ(ξ̄r) =
r∑

i=0

ξ̄i ⊗ ξ̄
2i

r−i
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One virtue of the dual description of A(n) is that it is easy to see that its dimension over F2

must be 2n+12n · · · 2 = 2(n+1)(n+2)/2, and that its top nonzero degree must be

(2n+1 − 1) + (2n − 1) + · · ·+ (2− 1) =

n+1∑

i=1

(2n+2−i − 1)(2i − 1)

= (n+ 1)(2n+2 + 1)− 2n+3 + 4

the degree in which ξ2n+1−1
1 ξ2n−1

2 · · · ξn+1 occurs.
A number of important spectra have mod 2 cohomology which is simply described in

terms of these subalgebras. We will see in Chapter 8 that this can make calculation of the
associated cohomology theories realtively accessible.

Let BP<n> be obtained from the Brown-Peterson spectrum BP by killing vn+1, vn+2,
etcetera. Then BP<0>= HZ(p), and BP<1> is the Adams summand of the p-localization
of complex connective K-theory, ku, so that

ku(p) ' BP<1> ∨ Σ2BP<1> ∨ · · · ∨ Σ2(p−2)BP<1> .

Let ko be real connective K-theory and eo2 the connective elliptic cohomology theory con-
structed by Hopkins and Mahowald [18].

Recall the notation for Hopf algebra quotients. If B is a sub Hopf algebra of A over k,
then A//B := A ⊗B k. This is the quotient of A by the left ideal of A generated by the
augmentation ideal IB of B. The point is just that the usual notation A/B is bad because
the left ideal generated by B itself is all of A since 1 ∈ B.

Theorem 1.6.1.

H∗BP<n> = A//E(n)

H∗eo2 = A//A(2)

H∗ko = A//A(1)

H∗HZ = A//A(0).

Further, there are maps

eo2

��

// ko

��
· · · // BP<n> // · · · // BP<2> // ku // HZ // HF2

whose induced homomorphisms in cohomology are the evident quotients induced by the in-
clusions

A(2) A(1)oo

· · · E(n)oo · · ·oo E(2)oo

OO

E(1)oo

OO

E(0)oo 1oo
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C0: C0,0 : ι0 7→ ι

C1: C1,1: η0 7→ (1)ι0
C1,2: η1 7→ (2)ι0
C1,4: η2 7→ (4)ι0
C1,8: η3 7→ (8)ι0

C2: C2,2: η00 7→ (1)η0

C2,4: η11 7→ (3)η0 + (2)η1

C2,5: η02 7→ (4)η0 + (0, 1)η1 + (1)η2

C2,8: η22 7→ (7)η0 + (6)η1 + (4)η2

C2,9: η03 7→ ((8) + (2, 2))η0 + ((7) + (4, 1) + (0, 0, 1))η1 + (1)η3

C2,10: η13 7→ ((9) + (3, 2))η0 + ((8) + (5, 1))η1 + (0, 2)η2 + (2)η3

C3: C3,3: η000 7→ (1)η00

C3,6: η111 7→ (4)η00 + (2)η11 + (1)η02

C3,10: η003 7→ ((8) + (2, 2))η00 + ((6) + (0, 2))η11 + (1)η03

C3,11: γ0 7→ ((9) + (3, 2))η00 + (0, 0, 1)η11 + (6)η02 + ((3) + (0, 1))η22

C3,12: η222 7→ (10)η00 + ((8) + (1, 0, 1))η11 + (4)η22 + (3)η03 + (2)η13

C4: C4,4: η04 7→ (1)η000

C4,11: η0003 7→ (8)η000 + ((5) + (2, 1))η111 + (1)η003

C4,13: γ00 7→ ((10) + (4, 2))η000 + ((7) + (1, 2) + (0, 0, 1))η111 + (2)γ0

C5: C5,5: η05 7→ (1)η04

C5,14: ρ1 7→ (10)η04 + ((3) + (0, 1))η0003

C5,16: ρ2 7→ (12)η04 + ((5) + (2, 1))η0003 + (3)γ00

C6: C6,6: η06 7→ (1)η05

C6,16: ρ11 7→ (11)η05 + (2)ρ1

C6,17: ρ02 7→ (12)η05 + (0, 1)ρ1 + (1)ρ2

C7: C7,7: η07 7→ (1)η06

C7,18: ρ111 7→ (12)η06 + (2)ρ11 + (1)ρ02

Figure 1.1. A minimal resolution of F2 over A through t− s = 13.
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h1 h2 h3

h2
2

c0

P 1h1 P 1h2

denotes multiplication by h0

1

1 3 4 5 6 7 8 9 10 110 2 12 13t− s:

by h2

by h1, and

Figure 1.2. ExtA(F2,F2) for t− s ≤ 13

• 1 = (ι0)
∗.

• hi = (ηi)
∗.

• hjhi = hihj = (ηij)
∗ if ηij or ηji exist, otherwise hihj = 0.

• Similarly, hihjhk = (ηijk)
∗ if ηijk or a permutation exist, otherwise hihjhk = 0,

except h2
0h2 = h3

1 = (η111)
∗ and h2

1h3 = h3
2 = (η222)

∗.
• h3

0h3 = (η0003)
∗.

• hk0 = (η0k)∗ for k > 3.
• c0 = (γ0)

∗.
• h1c0 = (γ00)

∗.
• P 1h1 = (ρ1)

∗.
• P 1h2 = (ρ2)

∗.
• h1P

1h1 = (ρ11)
∗.

• h0P
1h2 = (ρ02)

∗.
• h2

1P
1h1 = h2

0P
1h2 = (ρ111)

∗.

Figure 1.3. Definition of cocycles generating ExtA(F2,F2) for t− s ≤ 13
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CHAPTER 2

Products

There are two sorts of products to consider:

composition [Y, Z]p ⊗ [X, Y ]q
◦
−→ [X,Z]p+q

and smash [X1, Y1]p ⊗ [X2, Y2]q
∧
−→ [X1 ∧X2, Y1 ∧ Y2]p+q.

To be precise, if f ∈ [Y, Z]p and g ∈ [X, Y ]q then fg = f ◦ g ∈ [X, Y ]p+q is the composite

X ∧ Sp+q
1∧tq,p

−→ X ∧ Sq ∧ Sp
g∧1
−→ Y ∧ Sp

f
−→ Z

where tq,p is the one-point compactification of the evident linear isomorphism R
p+q −→

R
q ⊕R

p. Similarly, if f ∈ [X1, Y1]p and g ∈ [X2, Y2]q then f ∧ g ∈ [X1 ∧X2, Y1 ∧ Y2]p+q is the
composite

X1 ∧X2 ∧ S
p+q 1∧tp,q

−→ X1 ∧X2 ∧ S
p ∧ Sq

1∧τ∧1
−→ X1 ∧ S

p ∧X2 ∧ S
q f∧g
−→ Y1 ∧ Y2.

(GET THESE RIGHT)
For self maps of the sphere, these products are the same: if f ∈ [S, S]p and g ∈ [S, S]q then
fg ∈ [S, S]p+q is

S ∧ Sp+q
1∧tp,q

−→ S ∧ Sp ∧ Sq
g∧1
−→ S ∧ Sp

1∧f
−→ S ∧ S ' S

which agrees with g ∧ f , while gf ∈ [S, S]p+q is

Sp+q
tq,p

−→ Sq ∧ Sp
f∧1
−→ S ∧ Sq

1∧g
−→ S ∧ S ' S

which agrees with f ∧ g. These two differ by (−1)pq, the degree of the twist map τ :
Sp ∧ Sq −→ Sq ∧ Sp:

Sp+q

tp,q

��

(−1)pq

// Sp+q

tq,p

��
Sp ∧ Sq

τ // Sq ∧ Sp

Both products are well behaved in the Adams spectral sequence. Let Er(X, Y ) be the
Er term of the Adams spectral sequence Exts,tA (H∗Y,H∗X) =⇒ [X, Y ]t−s.
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2.1. Smash and tensor products

In cohomology, the smash product of maps becomes the tensor product of the corre-
sponding homomorphisms when composed with the Künneth isomorphisms.

H∗(Y1 ∧ Y2)
(f∧g)∗

//

κ ∼=
��

H∗(X1 ∧X2)

κ ∼=
��

H∗Y1 ⊗H
∗Y2

f∗⊗g∗// H∗X1 ⊗H
∗X2

In turn, the tensor product of homomorphisms induces pairings of Ext groups

Ext(H∗Y1, H
∗X1)⊗ Ext(H∗Y2, H

∗X2) −→ Ext(H∗Y1 ⊗H
∗Y2, H

∗X1 ⊗H
∗X2).

Theorem 2.1.1. There is a natural pairing of spectral sequences

Es1,t1
r (X1, Y1)⊗ E

s2,t2
r (X2, Y2) −→ Es,t

r (X1 ∧X2, Y1 ∧ Y2)

where s = s1 + s2 and t = t1 + t2, such that

(1) at E2 it is the pairing of Ext groups induced by the tensor product and the Künneth
isomorphisms,

(2) dr is a derivation with respect to this product,
(3) the pairing at Er+1 is induced from that at Er, and
(4) the pairing at E∞ is induced by the smash product.

Proof: Smash Adams resolutions of Y1 and Y2 and filter the resulting bicomplex by total
degree. The result is an Adams resolution of Y1∧Y2 whose corresponding algebraic resolution
is exactly the tensor product of the algebraic resolutions of H∗Y1 and H∗Y2 given by the
Adams resolutions we started with. �

Corollary 2.1.2. The Adams spectral sequence

ExtA(Fp,Fp) =⇒ [S, S]∧(p)

is a spectral sequence of rings converging to the ring structure of [S, S] and every Adams
spectral sequence

ExtA(H∗Y,H∗X) =⇒ [X, Y ]∧(p)

is a module over it, with the pairing at E∞ induced by the smash product pairing

[S, S]⊗ [X, Y ] −→ [X, Y ].

This means that for every r there is a pairing

Er(S, S)⊗ Er(X, Y ) −→ Er(X, Y )

which makes Er(X, Y ) a module over the ring Er(S, S) with respect to which the differential
dr is a derivation, and that the pairing at Er+1 is induced by that at Er.
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2.2. Composition and Yoneda products

Composition of homomorphisms

Hom(M,N)⊗ Hom(L,M) −→ Hom(L,N),

induces a pairing of Ext groups

Ext(M,N)⊗ Ext(L,M) −→ Ext(L,N),

known as the Yoneda product. We may view elements of Ext in three related ways: as
equivalence classes of cocycles, chain maps, or extensions. We shall find all three useful, so
we will describe the Yoneda product in terms of each.

If L −→ L,M−→M , and N −→ N are projective resolutions of L, M , and N , then we
may define elements x ∈ Exts,tA (L,M) as equivalence classes of cocycles ΣtLs −→ M , that
is, homomorphisms x̄ : ΣtL̄s −→M modulo those which factor through Ls−1:

L L0
oooo · · ·oo Ls−1

oo Lsoo

����~~
~~

~~
~~

x

����
��
��
��
��
��
��
��

Ls+1
oo · · ·oo

L̄s
aa

aaCCCCCCCC

x̄

��
M

(here L̄s = Cok(Ls+1 −→ Ls) = Ker(Ls−1 −→ Ls−2)). We omit explicit mention of suspen-
sions where possible to simplify the notation.

In this view, the Yoneda composite yx ∈ Ext(L,N) of x and y ∈ Ext(M,N) is the
(equivalence class of the) cocycle yxs, where {xs} is a chain map (of degree t) lifting x:

L L0
oooo · · ·oo Ls−1

oo Lsoo

x
||yy

yy
yy

yy
y

x0

��

· · ·oo Ls+s′oo

xs

��

· · ·oo

M M0
oo · · ·oo Ms′

oo

y
||xxxxxxxx

· · ·oo

N

Alternatively, elements of Exts,t(L,M) can be viewed as chain homotopy clases of chain
maps x∗ : L −→ M of bidegree (s, t). In this view, Yoneda product is simply composition
of chain maps. Though this definition is much cleaner, the definition in terms of cocyles
has the virtue of making it clear that a single homomorphism, the cocycle x : ΣtLs −→ M ,
completely determines the chain equivalence class of the chain map x∗ = {xs}. To be explicit,
the cocycle x is εx0, where ε : M0 −→ M is the augmentation of M, and it determines the
chain homotopy class of x∗ by the comparison theorem.

Finally, we may view elements of Exts,t(L,M), for s > 0, as equivalence classes of
extensions (exact sequences)

Ex : 0←− ΣtL←− P0 ←− P1 ←− · · · ←− Ps−1 ←−M ←− 0,
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and in these terms, the product yx is the sequence obtained by splicing Σt′Ex and Ey:

Ey : 0←− Σt′M ←− Q0 ←− Q1 ←− · · · ←− Qs′−1 ←− N ←− 0,

to get

0 Σt+t′Loo Σt′P0
oo · · ·oo Σt′Ps−1

oo Q0
oo

��~~
~~

~~
~~

· · ·oo Qs′−1
oo Noo 0oo

Σt′M

ccFFFFFFFF

To compare this to the preceding definitions, an extension E determines an equivalence
class of cocycles xE by the comparison theorem,

0 ΣtLoo ΣtL0
oo

��

· · ·oo ΣtLs−1
oo

��

ΣtLsoo

xE

��

· · ·oo

0 ΣtLoo P0
oo · · ·oo Ps−1

oo Moo 0oo

and a cocycle x defines an extension by pushout:

0 ΣtLoo ΣtL0k0

oo

x0

��

· · ·
k1

oo ΣtLs−1ks−1

oo

xs−1

��

ΣtLsks

oo

xs=x

��

· · ·oo

0 ΣtLoo P0j0
oo · · ·

j1
oo Ps−1

js−1

oo M
js

oo 0oo

each pair (xi−1, ji) is the pushout of the pair (ki, xi), with xs = x.
When x ∈ Ext0(L,M) = Hom(L,M), Yoneda composite with x is simply the induced

homomorphism

x∗ : Ext(K,L) −→ Ext(K,M)

or

x∗ : Ext(M,N) −→ Ext(L,N)

the latter of which is given by the comparison theorem. If x = f ∗ : H∗Z −→ H∗Y ,
the comparison theorem 1.2.1 for Adams resolutions implies the naturality of the Adams
spectral sequence:

Exts(H∗Y,H∗X)

(f∗)∗

��

+3 [X, Y ]

f∗
��

Exts(H∗Z,H∗X) +3 [X,Z].

However, this is nontrivial in Ext only when f induces a nonzero homomorphism in coho-
mology, that is, when f has Adams filtration 0. The Generalized Comparison Theorem gives
the corresponding result when f has positive Adams filtration, and is the key step in proving
that composition of maps is detected by Yoneda composite at E2.
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Theorem 2.2.1. If the map f : Y −→ Z has filtration s then f induces a map of Adams
resolutions

Y
f

ttiiiiiiiiiiiiiiiiiiiiiiii

f0
���
�
� Y1

oo

f1
���
�
�

Y2
oo

f2
���
�
�

· · ·oo

Z Z1
oo · · ·oo Zsoo Zs+1

oo Zs+2
oo · · ·oo

Proof: By theorem 1.3.5, f lifts to f0 : Y −→ Zs. Since

Zs ←− Zs+1 ←− · · ·

is an Adams resolution of Zs, the comparison theorem 1.2.1 gives the lifts fi for i > 0. �

The resulting chain map

0 H∗Yoo H∗Ȳ0
oo H∗ΣȲ1

oo · · ·oo

0 H∗ΣsZsoo

f∗0

OO

H∗ΣsZ̄soo

f̄∗0

OO

H∗Σs+1Z̄s+1
oo

f̄∗1

OO

· · ·oo

defines a cocycleH∗ΣsZ̄s −→ H∗Y , unique up to coboundaries, whose value in Exts,s(H∗Z,H∗Y )
is an infinite cycle which detects f ∈ [Y, Z].

The following theorem, the main result of this section, will imply that Yoneda composite
with this cocycle will converge to the induced homomorphism [X, Y ] −→ [X,Z]. More
generally, the theorem applies at all stages of the spectral sequence, not just to infinite
cycles.

Theorem 2.2.2. There is a natural pairing of spectral sequences

Es1,t1
r (Y, Z)⊗ Es2,t2

r (X, Y ) −→ Es,t
r (X,Z)

where s = s1 + s2 and t = t1 + t2, such that

(1) at E2 it is the Yoneda pairing,
(2) dr is a derivation with respect to this product,
(3) the pairing at Er+1 is induced from that at Er, and
(4) the pairing at E∞ is induced by composition of maps.

Proof: R.M.F. Moss ([33]). �

2.3. The geometric boundary theorem

Suppose that A
α
−→ B

β
−→ C is a cofiber sequence with geometric boundary map

δ : C −→ ΣA. If δ∗ = 0 in cohomology, then the cofiber sequence induces a short exact
sequence

E : 0 −→ H∗C
β∗

−→ H∗B
α∗

−→ H∗A −→ 0

so there is an algebraic boundary map, or connecting homomorphism,

∂ : Exts,t(H∗C,H∗X) −→ Exts+1,t(H∗A,H∗X).
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Theorem 2.3.1 (Bruner [10]). The algebraic boundary map commutes with Adams spec-
tral sequence differentials, and thus induces a map

∂r : Es,t
r (X,C) −→ Es+1,t

r (X,A).

for each r ≥ 2. At E∞, ∂∞ is the map of associated graded modules induced by δ : C −→ ΣA:

Fs[X,C]t−s
δ∗−→ Fs+1[X,ΣA]t−s ⊂ [X,A]t−s−1

where Fs is the submodule of maps of Adams filtration at least s.

Of course, if δ has Adams filtration greater than one, this last map will be trivial.

Proof: Since the algebraic boundary map ∂ is given by Yoneda composite with the extension
E , we need only show that δ is detected by E . Since δ∗ = 0, δ lifts to δ0 as in theorem 2.2.1.
This induces a map of cofiber sequences:

ΣA C
δoo

δ0
��

B
βoo

δ̄0
��

A
αoo

ΣA ΣA1
oo A/A1

oo Aoo

This in turn induces a map of short exact sequences which shows that the cocycle δ∗0 corre-
sponds to the extension E :

0 // H∗C // H∗B // H∗A // 0

0 // H∗ΣA1
//

δ∗0

OO

H∗A/A1
//

OO

H∗A // 0

By the general comparison theorem (2.2.1), we obtain a map from any Adams resolution
of C to any Adams resolution of ΣA1. Commutation of ∂ with Adams differentials and
convergence to the geometric boundary map δ now follows simply by composition with this
map of resolutions:

CΣt−1X

y

��

Σt−1Xoo

dry
��

C

δ0
��

δ

||yy
yy

yy
yy

y
· · ·oo Csoo

��

Cs+roo

��
ΣA ΣA1

oo · · ·oo ΣAs+1
oo ΣAs+r+1

oo

shows commutation with the differentials, and

ΣtX

y

��
C

δ0
��

δ

||yy
yy

yy
yy

y
· · ·oo Csoo

��
ΣA ΣA1

oo · · ·oo ΣAs+1
oo
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shows that ∂∞ is the map of associated graded modules given by composition with the geo-
metric boundary map. �

Corollary 2.3.2. The long exact sequence in Ext converges to the long exact sequence
in homotopy:

...

∂
��

...

δ∗
��

Exts,t(H∗A,H∗X)

(α∗)∗

��

+3 [X,A]t−s

α∗

��
Exts,t(H∗B,H∗X)

(β∗)∗

��

+3 [X,B]t−s

β∗
��

Exts,t(H∗C,H∗X)

∂
��

+3 [X,C]t−s

δ∗
��

Exts+1,t(H∗A,H∗X)

(α∗)∗

��

+3 [X,A]t−s−1

α∗

��
...

...

Proof: This follows since ∂ is (δ∗0)
∗ composed with the isomorphism Exts,t(H∗(ΣA1), H

∗X) ∼=
Exts+1,t(H∗A,H∗X). �

Since δ∗ = 0 in cohomology, α∗ is an epimorphism and β∗ a monomorphism. In particular,
α∗ and β∗ are both nonzero and the maps α∗ and β∗ in homotopy will not generically raise
Adams filtration, whereas δ∗ will raise Adams filtration by at least one. If the short exact
sequence E is not split, then the algebraic boundary map will generically be nonzero and
the map δ∗ will generically raise Adams filtration by exactly one. More precisely, in the
universal example, X = C, δ∗(1C) = δ, so that δ∗ raises Adams filtration by exactly one in
this instance.

When the extension E is split, then ∂ = 0, so that at E2 the long exact sequence becomes
short exact sequences. In this case, δ : C −→ ΣA has Adams filtration s0 > 1 and Yoneda
composite with the element δ0 ∈ Exts0,s0−1(H∗A,H∗C) which detects δ converges to δ∗:

Exts,t(H∗C,H∗X)

δ∗0
��

+3 [X,C]t−s

δ∗
��

Exts+s0,t+s0−1(H∗A,H∗X) +3 [X,A]t−s−1

However, this no longer fits into an exact sequence at E2.
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2.4. Products by Ext1

We can now justify our claims about products in Section 1.5. Consider products

Ext1(F2,F2)⊗ Exts(H∗X,F2) −→ Exts+1(H∗X,F2).

We can compute these directly from the differential in the minimal free resolution of H∗X.
In fact, the technique works perfectly well to compute

Ext1
A(k, k)⊗ ExtsA(M, k) −→ Exts+1

A (M, k)

for any connected algebra A over k and any module M over A.
Let IA = Ker(A

ε
−→ k) be the augmentation ideal of A. If D∗ −→ k is a minimal free

resolution of k, then D0 = A and d0 : D1 −→ D0 factors as D1 � IA >−→ A. It follows
that Ext1

A(k, k) is the linear dual of IA/(IA)2, since any cocycle of homological degree one
is represented by a unique linear map IA −→ k. (Minimality of D∗ gives uniqueness.)

Let C∗ −→M be a minimal free resolution of M .

Proposition 2.4.1. Let a ∈ Ext1(k, k) and x ∈ Exts(M, k). Let xi : Cs+i −→ Di lift the
cocycle representing x, and let ā : IA −→ k be the factorization of a through IA = Im(d0).
Then ax1 : Cs+1 −→ k is a cocycle representing ax ∈ Exts+1(M, k). If {gi} is a basis for Cs
and g ∈ Cs+1 has d(g) =

∑
αigi, then the value of this cocycle can be computed directly from

x by

(ax1)(g) = āx0(d(g))

= āx0(
∑

αigi)

=
∑

ā(αi)x(gi)

Proof: We have already shown that the cocycle ax1 represents ax. To show the formula for
ax1 is correct, it is only necessary to remark that the following diagram commutes and that
x0(αgi) = αx0(gi), since x0 is determined by x and the requirement that x0 be A-linear.

Cs

x

����
��
��
��
��
��
��
��

x0

��

Cs+1
d

oo

zzzzuu
uuuu

uuu

x1

��

(IA)Cs
cc

ccGGGGGGGGG

x0

��

k Aoo D1
oo

yyyytttttttttt

a

����
��

��
��

��
��

��
��

�

IA
dd

ddHHHHHHHHHH

ā
��
k

�

If A = A, the mod 2 Steenrod algebra, then IA/(IA)2 is spanned by a minimal set of

generators for A, say {Sq2i

| i ≥ 0}. In Ext1(F2,F2), the linear dual of IA/(IA)2, we let
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hi be dual to Sq2i

. (The name stems from the fact that hi detects the Hopf map of degree
2i − 1 when such a map exists, i.e., for i ≤ 3.)

The theorem then says, in particular, that if x is dual to gj, then hix is the sum of the A-

generators of Cs+1 whose differential contains the term Sq2i

gj. Applying this to the minimal
resolution in Section 1.5 gives all the products shown there. For example, the differentials
d(ηi) = Sq2i

ι0 essentially define the hi. The differential d(η00) = Sq1η0 similarly justifies the
name h2

0 for the dual of this generator. More interestingly, in C2,4 we find the generator η11

whose dual is h2
1. The differential d(η11) must be either Sq2η1 + Sq3η0 or Sq2η1 + Sq0,1η0.

It cannot be simply Sq2η1 as this is not a cycle. Since Sq3 is not indecomposable, the term
Sq3η0 does not affect the product structure: we do not obtain another way of writing h2

1 as
a product, as we do from each of the three terms in

d(η111) = Sq4η00 + Sq2η11 + Sq1η02

which tell us that h2(h
2
0) = h1(h

2
1) = h0(h0h2). However, the term Sq3η0 does affect the

Massey products. If h0 and h1 lift to chain maps h̃0 and h̃1, respectively, then it is easy to

check that the null-homotopy H : h̃1 ◦ h̃0 ' 0 maps C2 −→ C0 by η00 7→ 0, η11 7→ η0, since

h̃0(η11) = Sq1(η1), so that h̃1h̃0(η11) = Sq1(ι0) = d(η0). In Section 2.6 we will see that the
Massey product 〈h0, h1, h0〉 contains the cocycle h0 ◦H . Since h0 ◦H(η11) = 1, we see that

〈h0, h1, h0〉 = h2
1

perfectly reflecting the Toda bracket

〈2, η, 2〉 = η2

in π∗(S).

2.5. Diagrammatic methods in module theory

Algebraic topologists have long represented cell complexes by graphs in which each vertex
represents a cell and each edge is labelled by the attaching map of the cell (or its top
dimensional component). Another variant is really a diagram of the (mod p) cohomology,
with each vertex representing an Fp summand and the labelled edges corresponding to the
action of a generating set for the Steenrod algebra or some subalgebra.

Representation theorists have formalized and greatly extended this idea with the notion
of a quiver. In this more general version, vertices can now represent a variety of different
modules and edges can be labelled by, for example, elements of the Ext module for the source
and target.

Some of the calculations relevant to connective K-theory can be given in quite clear form
using diagrams of this sort. It seems likely that these methods will become more important
in topology, so we have chosen to give a simple example here. The reader who wishes to
learn more is encouraged to consult Benson [7, Ch. 4] or Carlson [13].

We will calculate the cohomology ring H∗(Z/p,Fp) = ExtFp[Z/p](Fp,Fp). The Yoneda
product turns out to be an easy and painless way to do this, in contrast to the effort required
to produce a diagonal map and compute the ring structure from the it. The graphical
representation of the resolutions and cocycles will be convenient, but not essential in this
application. However, it serves as a simple example with which to introduce the method.
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The group ring A = Fp[Z/p] can be identified with Fp[T ]/(T p), where T = τ − 1, if
Z/p =<τ | τp = 1> . We will represent A-modules by graphs in which each vertex is an Fp

and edges are multiplications by T which map the corresponding Fp’s isomorphically. Thus
the extension

0 −→ IA −→ A −→ Fp −→ 0

is graphically represented as

◦ //

��

◦

◦ //

��

◦
��

...
��

...
��

◦ // ◦

The horizontal arrows show the module homomorphisms and the vertical arrows represent
multiplication by T in each of the three modules displayed. The middle module is p dimen-
sional over Fp. In it, the top vertex represents 1, the next T , etecetera, until the bottom one,
which represents T p−1. Since this is annihilated by T , there is no arrow from this vertex.
The left module is p− 1 dimensional, as can be deduced from the fact that its height is one
less than that of the middle module.

We obtain a free resolution of Fp over A which is periodic of period 2, alternating multi-
plication by T and by T p−1:

· · · // C3
// C2

// C1
// C0

// Fp

◦ //

��

◦

◦ //

��

◦
��

...
��

...
��

◦ //

��

◦

◦
��

// ◦

◦
��

// ◦
��

...
��

...
��

◦
��

// ◦

· · · // ◦

It follows that each H i(Z/p,Fp) = Fp. To determine the ring structure, let x and y be
nonzero elements of H1 and H2 respectively. Consider the chain map induced by x:
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It follows immediately that, if p = 2 then multiplication by x is an isomorphism

H i(Z/2,F2) −→ H i+1(Z/2,F2)
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for all i. Accordingly, H∗(Z/2,F2) = F2[x], the polynomial algebra on x. If p > 2 then
evidently x2 = 0 and multiplication by x is an isomorphism

H2i(Z/p,Fp) −→ H2i+1(Z/p,Fp)

for all i. Similarly, the reader is encouraged to construct the chain map corresponding to
multiplication by y, which will show that multiplication by y is an isomorphism

H i(Z/p,Fp) −→ H i+2(Z/p,Fp)

for all i. (This is practically evident in the periodicity of the resolution, of course.) Accord-
ingly, H∗(Z/p,Fp) = E[x] ⊗ Fp[y], the tensor product of the exterior algebra on x and the
polynomial algebra on y.

The dihedral algebras are another nice family of examples. Let k be a field of character-
istic 2 and define k-algebras by

D2i = k<a, b | a2 = b2 = 1, (ab)i = (ba)i> , and

D2i+1 = k<a, b | a2 = b2 = 1, (ab)ia = (ba)ib> .

It is easy to see that Di is 2i-dimensional as a k-vector space, and that D2n = k[D2n+1 ], the
group algebra of the dihedral group

D2n+1 =<x, y | x2 = y2 = (xy)2n

>

of order 2n+1, by the isomorphism a = x + 1, b = y + 1. (Note that the other D2i are not
the group algebras of the groups D4i since the former have nilpotent augmentation ideal and
the latter do not.) We can diagram these algebras as shown:

b

ab a

a

a

a

a

b

b b

b

b

a

a b

a

b

D2 D3 D4

A free resolution for k over D2 is given by splicing the short exact sequences
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biai

i

where i 7→ 1,

bu2

u2

au1 bu1 + au2

u1

where u1 7→ ai and u2 7→ bi,

v1 v2 v3

where v1 7→ au1, v2 7→ bu1 + au2, and v3 7→ bu2, etc. It should be evident how to continue
this. Similarly, we can resolve k over D3 by splicing the short exact sequences

i

ai bi

where i 7→ 1,

u1 u2

au1 bu2

abu1 + bau2

where u1 7→ ai and u2 7→ bi,
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av1 bv3
v2

v1 v3

abv1 + bv2 av2 + bav3

where v1 7→ au1, v2 7→ abu1 + bau2, and v3 7→ bu2, etc.
For both of these resolutions, we define cocycles x : C1 −→ k and y : C1 −→ k by

x : u1 7→ 1 y : u1 7→ 0
u2 7→ 0 u2 7→ 1

and w : C2 −→ k by

w : v1 7→ 0
v2 7→ 1
v3 7→ 0.

For D2, it will transpire that w = xy, but for Di, i > 2, w is indecomposable.
It should be clear from these how the general case behaves. The reader is invited to

continue this in Exercise 2.5.5. (Note that we have transposed the a’s and b’s in the copy of
D3 generated by v2, to make the diagrams work more cleanly. Similar transpositions will be
helpful for Di when i is odd.)

Here are some exercises using these ideas.

Exercise 2.5.1. Show that an extension representing hi ∈ Ext1,2i

A is

Ei :
Sq2i

0

2i

by computing the pushout of the cocycle

C1
//

hi ""EE
EE

EE
EE

IA

h̄i

��

Σ2i

F2

where h̄i(Sq
2j

) = δij .
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Figure 2.1. A(1) =< Sq1, Sq2 >⊂ A. Straight lines represent Sq1 and
curved lines, Sq2.

Exercise 2.5.2. Work over A(1) (see Figure 2.1) rather than A for simplicity. Note that
the Yoneda composite of E0 with itself is

E0 ◦ E0 :

Compute the pushout

0←− F2 ←−M0 ←−M1 ←− Σ2
F2 ←− 0

of the cocycle h2
0, and show that M0 = A(1). Compute the map (which is an equivalence of

extensions) from the pushout to E0 ◦ E0.
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Exercise 2.5.3. Again, let us work over A(1) for simplicity. Show that the Yoneda
composite

E0 ◦ E1 :

though not evidently trivial, is nonetheless a trivial extension, by showing it is equivalent to
one of the form

0←− F2 ←− F2 ⊕M ←−M ⊕ Σ3
F2 ←− Σ3

F2 ←− 0,

which is evidently the Yoneda composite of two split extensions, and is therefore trivial.

Hint: The cocycle h0h1 is a coboundary. Use the factorization C2 −→ C1 −→ Σ3
F2 of h0h1

to show that the pushout of h0h1 has the required form. Use the fact that it is a pushout to
map it to E0 ◦ E1.

Find a still simpler trivialization

0←− F2 ←−M0 ←− M ⊕ Σ3
F2 ←− Σ3

F2 ←− 0

which is the Yoneda composite of an extension 0 ←− F2 ←− M0 ←− M ←− 0 and a split
extension 0←−M ←− M ⊕ Σ3

F2 ←− Σ3
F2 ←− 0, where M is 2 dimensional over F2.

Remark 2.5.4. In the preceding two exercises you may wish to use the minimal resolution
of A(1) computed in Chapter 9 (Figure ??).

Exercise 2.5.5. . Using the beginnings of the minimal resolutions for D2, D3, and D4

above as models, compute minimal resolutions of k over Di for all i. Compute chain maps
induced by the cocycles x, y, and w, defined above (and their generalizations to arbitrary
i), and use them to show that

H∗(D; k) =

{
k[x, y] n = 2
k[x, y, w]/(xy) n > 2.

2.6. Massey products and Toda brackets

Massey products and Toda brackets are examples of ’secondary compositions’: elements
in homology or homotopy which are formed using null-homotopies. When dealing with
algebras which have many zero divisors, these secondary compositions play an important
role. Both the homotopy groups of spheres and the cohomology of the Steenrod algebra fall
into this group.

Massey products can be defined in the homology of a differential algebra. In a suitably
general form (’matrix Massey products’) and a wide variety of situations, they allow the
construction of all elements in homology as Massey products of elements in homological
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degree 1. For a definitive treatment, see May ??. Here we shall use only the simplest case,
which is sufficient to exemplify the idea, and to produce the elements we shall study.

Toda brackets can be defined in triangulated categories such as the stable homotopy
category or the category of chain complexes. The latter case includes ExtA(k, k), the co-
homology of a Hopf algebra A. Here we can either define Toda brackets of chain maps,
or define Massey products since ExtA(k, k) = H(C), where C is an appropriate differential
algebra. Naturally, these two constructions will agree in this case. As we will discuss in
Chapter 10, efficiency considerations make the Toda bracket of chain maps the method of
choice for actual calculations, but both descriptions are useful for theoretical considerations.

Let us start with Massey products. Suppose C is a differential algebra, and let xi ∈ H(C)
for i = 1, 2, 3 satisfy x1x2 = 0 and x2x3 = 0. Choose cycles ai ∈ C representing the xi.
Then there are elements a12, a23 ∈ C such that d(a12) = a1a2 and d(a23) = a2a3. Define
ā = (−1)|a|a, for a ∈ C. Then

d(a12a3 − ā1a23) = d(a12)a3 − (−1)|a1|ā1d(a23)

= a1a2a3 − a1a2a3

= 0

so a12a3 − ā1a23 defines an element in H(C). We define the Massey product

〈x1, x2, x3〉 = {a12a3 − ā1a23 | d(aij) = aiaj}.

Since the choice of a12 and a23 can be altered by any cycle, the indeterminacy of 〈x1, x2, x3〉,
defined by

In(〈x1, x2, x3〉) = {a− b | a, b ∈ 〈x1, x2, x3〉}

can be described as

In(〈x1, x2, x3〉) = x1H
|x2x3|(C) +H |x1x2|(C)x3.

To define a Toda bracket, let us start with maps

X
x3−→ Y

x2−→ Z
x1−→W

such that x1x2 ' 0 and x2x3 ' 0. Then we have an extension h : Cx3 −→ Z of x2 over
the cofiber of x3,

X
x3 // Y

x2 //

i !!C
CC

CC
CC

C Z
x1 // W

Cx3 φ
//

h

=={
{

{
{

ΣX

H

==z
z

z
z

and, since x1hi ' x1x2 ' 0, there is an extension H : ΣX −→ W of x1h over φ. The
Toda bracket 〈x1, x2, x3〉 is the set of all such H .

In the category of topological spaces, where ΣX is the union of two cones on X, we can
produce maps H by putting

CX
x23−→ Z

x1−→W

on one cone, and

CX
Cx3−→ CY

x12−→ W

on the other, where x12 : x1x2 ' 0 and x23 : x2x3 ' 0 are null-homotopies.
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In the category of chain complexes, the cofiber of x3 is (Cx3)n = Xn ⊕ Yn+1 with differ-
ential

d =

(
d 0

(−1)n(x3)n d

)
.

A chain map h : Cx3 −→ Z extending x2 must then be x2 on the Y summand and a
null-homotopy of x2x3 on the X summand. Similarly, the cofiber of i : Y −→ Cx3 has an
additional summand Yn−1 in degree n, and the extension H restricted to this summand is a
null-homotopy of x1x2.

This makes the analogy with the Massey product evident. We can make it more precise
as follows. Replace the differential algebra C by the differential algebroid (i.e., algebra with
many objects) of all graded homomorphisms between our chain complexes. Let us write
Hom(X, Y ) for graded homomorphisms from X to Y , not required to commute with the
differential. We can define a derivation δ : Hom(X, Y ) −→ Hom(X, Y ) by δ(x) = dx − x̄d.
Write composition as juxtaposition, as usual. The following lemmas are simple calculations.

Lemma 2.6.1. The homomorphism δ satisfies:

(1) δδx = 0
(2) δ(ab) = δ(a)b+ āδ(b)

(3) δ(x) = xd− dx̄

Lemma 2.6.2. δ(x) = 0 iff x is a chain map.

Lemma 2.6.3. h is a null homotopy, h : x ' 0, iff δ(h) = x.

We therefore have

Proposition 2.6.4. The homology of Hom(X, Y ) with respect to δ, H(Hom(X, Y ), δ) is
the set of chain homotopy equivalence classes of chain maps, [X, Y ].

Now the Massey product definition 〈x1, x2, x3〉 = {a12a3−ā1a23 | [ai] = xi, δ(aij) = aiaj}
has an explicit interpretation in terms of chain maps and chain null-homotopies which is
easily verified to be equivalent to the Toda bracket definition as outlined above.

A surprise emerges from this. Since a chain null-homotopy has no nonzero component
mapping into homological degree 0, the cocycle corresponding to a12a3 − ā1a23 does not
depend on a12. Thus, we need only calculate the null-homotopy a23 and compose with a1

to compute the Toda bracket (Massey product) 〈x1, x2, x3〉. This is counterintuitive at first
encounter, in that it appears to say that the null-homotopy of a1a2 makes no difference, and
in fact might not even be needed. However, this is not so. The composite ā1a23 is not a
chain map, even though its component mapping into degree 0 suffices to determine a cocycle.
When we lift this cocycle to a chain map, the additional terms needed to convert ā1a23 into
a chain map produce the missing piece, a12a3. Calculationally, this is a great convenience:
from a single null-homotopy, a23, we are able to determine all Massey products 〈x1, x2, x3〉.

An additional simplification occurs when x1 has homological degree 1. The same sort of
argument as in Section 2.4 shows that we may calculate 〈x1, x2, x3〉 directly from the chain
map x3, without need of the null-homotopy, just as we were able to compute products x1x2

where x1 has homological degree 1, without having to compute the chain map induced by
x2.
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Adopt the notation of Section 2.4: let a ∈ Ext1
A(k, k), and let x ∈ Exts2(M, k) and

y ∈ Exts3(N,M), so that 〈a, x, y〉 ∈ Exts2+s3(N, k). Let C −→ k, D −→ M and E −→ N
be resolutions of M and N . Let h : xy ' 0, with degree 1 component h1 : Es2+s3 −→ C1.

Theorem 2.6.5. If g ∈ Es2+s3 write ỹs2(g) =
∑

i aigi ∈ Ds2. Then

〈a, x, y〉(g) =
∑

i

ā(ai)x(gi)

Proof: We compute:

〈a, x, y〉(g) = ah1(g)

= ādh1(g)

= āx̃0ỹs2(g)

=
∑

i

ā(ai)x(gi)

Es2+s3

eys2

��
h1

$$HHHHHHHHHHHHHHHHHHHHHHHH
Es2+s3+1

eys2+1

��

oo

Ds2

ex0

��

x

||xxxxxxxxx
Ds2+1

ex1

��

oo

k C0 = Aoo IA

ā

��

oo C1

��

doo

a
zzuuuuuuuuuuu

k C0
oo

�

Here is what the theorem says in the cohomology of the Steenrod algebra. Recall that
hi is dual to Sq2i

. If x is dual to an A-generator gj of the resolution, then the Massey

product 〈hi, x, y〉 is the sum of those A-generators g such that ỹ(g) contains the term Sq2i

gj.
Linearity of the Massey product then determines all Massey products 〈hi, x, y〉 from the
chain map ỹ.

In Figure 2.2 we give the chain maps induced by h0 and h1 in low degrees, and in Figure
2.3 we give the Massey products which follow from these. We follow the customary practice
of writing Massey products as elements rather than singleton sets when their indeterminacy
is 0.

For example, since h̃0(η11) = Sq1η1, and h1 is dual to η1, we get that 〈h0, h1, h0〉 is dual
to η11s, and hence equal to h2

1.

Note that the presence of a term Sq2i

gj in ỹ(g) does not imply that the Massey product

〈hi, x, y〉 exists. The products hix and xy may not be zero. For example, h̃0(η13) contains
the term Sq8η0, but the Massey product 〈h3, h0, h0〉 fails to exist on two counts: both h0h3

and h2
0 are nonzero.

41



x h̃0(x) h̃1(x)
η0 ι 0
η1 0 ι
η2 0 0
η3 0 0
η00 η0 0
η11 (1)η1 η1

η02 η2 (2)η0 + (1)η1

η22 (3)η2 (5)η0 + (2)η2

η03 (7)η0 + (6)η1 + η3 ((6) + (0, 2))η0 + (5)η1 + (3)η2

η13 ((8) + (2, 2))η0 + ((4, 1) + (0, 0, 1))η1 (7)η0 + η3

η000 η00 0
η111 (1)η11 + η02 η11

η003 (5)η11 + η03 ((4) + (1, 1))η11

γ0 (8)η00 + (5)η02 + (2)η22 (7)η00 + (4)η02 + (1)η22

η222 ((9) + (3, 2))η00 + (0, 0, 1)η11 + (3)η22 + (1)η13 (8)η00 + (5)η02 + (2)η22 + η13

η04 η000 0
η0003 (7)η000 + ((4) + (1, 1))η111 + η003 (6)η000 + ((3) + (0, 1))η111

γ00 (3, 2)η000 + ((6) + (0, 2))η111 + (1)γ0 (8)η000 + (5)η111 + γ0

η05 η04 0
ρ1 (9)η04 + (2)η0003 (8)η04 + (1)η0003

ρ2 (11)η04 + (4)η0003 + (2)γ00 (1)γ00

η06 η05 0
ρ11 (10)η05 + (1)ρ1 (9)η05 + ρ1

ρ02 (11)η05 + ρ2 (10)η05 + (1)ρ1

η07 η06 0
ρ111 (11)η06 + (1)ρ11 + ρ02 (10)η06 + ρ11

Figure 2.2. Chain maps lifting h0 and h1 in the resolution of Figure 1.2

The Massey products fall into three groups. Those in the first group all follow from a
general formula:

y(x ∪1 x) = ySqs−1(x) ∈ 〈x, y, x〉

if x ∈ Exts. We will discuss the cup-i construction and the Steenrod operations which apply
to the cohomology of a cocommutative Hopf algebra such as the Steenrod algebra in the next
two chapters, and prove this formula (Theorem ??). Since hi ∈ Ext1 and Sq0(hi) = hi+1, we
get

hi+1y ∈ 〈hi, y, hi〉.

All the Massey products in the first group are of this form.
The Massey products in the second group have the form

〈h3, h
4
0, x〉

or can be reduced to it by various identities for Massey products, such as

〈h3, h
4
0, x〉 = 〈x, h4

0, h3〉 = 〈x, h3
0, h0h3〉 = 〈x, h3

0h3, h0〉.
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〈h0, h1, h0〉 = h2
1

〈h0, h
2
1, h0〉 = {0, h3

1}
〈h0, h1h3, h0〉 = h2

1h3 = h3
2

〈h0, c0, h0〉 = h1c0
〈h0, P

1h1, h0〉 = h1P
1h1

〈h0, h1P
1h1, h0〉 = {0, h2

1P
1h1}

〈h1, h0, h1〉 = h0h2

〈h1, h2, h1〉 = h2
2

〈h1, h
3
2, h1〉 = {0, h3

2}

〈h1, h
3
0h3, h0〉 = P 1h1

〈h2, h
3
0h3, h0〉 = P 1h2

〈h0, h
3
0h3, h1〉 = P 1h1

〈h3, h
4
0, h1〉 = P 1h1

〈h1, h
2
2, h0〉 = c0

〈h2, h
3
1, h0〉 = {0, h3

0h3}
〈h2, h0h2, h1〉 = c0
〈h0, h

2
2, h1〉 = c0

〈h1, h1c0, h0〉 = P 1h2

Figure 2.3. Massey products derived from the chain maps of Figure 2.2

This is one definition of Adams’ periodicity operator:

P 1x = 〈h3, h
4
0, x〉

if h4
0x = 0.
The third group contains the rest. Note in particular that c0, though indecomposable as

a product, does have the Massey product descriptions

c0 = 〈h1, h
2
2, h0〉 = 〈h1, h2, h0h2〉 = 〈h1, h0h2, h2〉

and similarly,
P 1h2 = 〈h0, h1c0, h1〉.

We have included all the deductions which can be made from the chain maps in Figure 2.2.
This is redundant, of course: since c0 = 〈h1, h

2
2, h0〉 = 〈h0, h

2
2, h1〉, it can be computed from

either of h̃0 or h̃1, but we wanted the comparison between the chain maps and the Masssey
products which can be deduced from them to be as straightforward as possible.

Finally, since there are no differentials in the Adams spectral sequence in these low
dimensions, these Massey products give Toda brackets in the stable homotopy groups of
spheres, by Moss’ convergence theorem ([?]). For example,

〈2, η, 2〉 = η2 and

〈η, 2, η〉 = 2ν.
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CHAPTER 3

The Origins of Steenrod Operations

3.1. Where do Steenrod operations come from?

Of course, nowdays we simply say that A = H∗H = [H,H ], the endomorphism ring
of mod p cohomology. But, how do we know what this algebra is? In fact, it was known
before the representing objects, the Eilenberg-MacLane spectra, were constructed. Also,
very similar algebras act on

- H∗QX, where QX = lim
−→

(X −→ ΩΣX −→ Ω2Σ2X −→ · · · ),

- H∗E = ExtE(k, k), where E is a cocommutative Hopf algebra over a field k of positive
characteristic, and

- the cohomology of restricted Lie algebras in positive characteristic,

among others.
Answer: A highly symmetric product plus the need to make choices which destroy that

symmetry lead to operations which come from comparison of the choices. We will illustrate
this with three examples.

3.2. The cup-i construction in the mod 2 cohomology of spaces

The diagonal map ∆ : X −→ X ×X, which is strictly cocommutative, is the geometric
source of the cup product in cohomology. Cocommutativity means that if τ(x1, x2) = (x2, x1)
is the transposition, then τ∆ = ∆:

X
∆ //

∆ ##GGG
GGGG

GG X ×X

τ

��
X ×X

If C∗(•) and C∗(•) represent singular chains and cochains, then the commutative triangle

C∗(X) C∗(X ×X)
∆∗oo induces H∗(X) H∗(X ×X)

µoo

C∗(X ×X)

∆∗

ffMMMMMMMMMM
τ∗

OO

H∗(X ×X)

µ

ffNNNNNNNNNN
τ∗

OO

This is not quite a product inH∗X yet: we also need the Künneth isomorphismH∗(X×X) ∼=
H∗X⊗H∗X, and this is where the perfect (co)commutativity of ∆ and ∆∗ is destroyed. On
the chain level, we have

C∗X
∆∗ // C∗(X ×X)

AW

'
// C∗X ⊗ C∗X
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and thereby obtain an operation on cochains,

(a ∪ b)(x) = (a⊗ b)(AW (∆∗(x))).

Here AW is a natural chain equivalence, for example, the Alexander-Whitney map. Such
maps are unique up to homotopy (see [23, pp. 238-248] for a nice discussion), but are
only homotopy commutative, not exactly commutative. For example, in order to write the
diagonal 1-simplex in the unit square as a sum of product simplices, we must either choose
the left edge plus the top edge, or the bottom edge plus the right edge, or some other linear
combination of these whose coeffficents sum to 1. For commutativity, we would need both
coefficients to be the same, and this cannot be done unless 2 is invertible. However, the
resulting operation is homotopy commutative, ∪τ ' ∪; in other words, the triangle

C∗X ⊗ C∗X

τ

��

∪ // C∗X

C∗X ⊗ C∗X

∪

88ppppppppppp

homotopy commutes. Thus, we have a chain homotopy ∪1 : ∪τ ' ∪:

d ∪1 (a⊗ b) + ∪1d(a⊗ b) = ∪τ(a⊗ b)− ∪(a⊗ b)

= b ∪ a− a ∪ b

so that

d ∪1 (a⊗ a) + ∪1d(a⊗ a) = a⊗ a− a⊗ a

= 0

and if a is a cocycle, then d(a⊗ a) = 0 and so d ∪1 (a⊗ a) = 0. This gives

Sqn−1(a) := a ∪1 a ∈ H
2n−1X

for a ∈ HnX, the mod 2 cohomology of X.
Repeating this process leads to chain homotopies ∪i+1 : ∪iτ ' ∪i for each i ≥ 0, and

from these we obtain the Steenrod operations

Sqn−i(a) := a ∪i a ∈ H
2n−iX

in mod 2 cohomology.

3.3. The Dyer-Lashof operations in the homology of infinite loop spaces

Since QX = ΩQΣX = ΩX1, we have a product, loop sum, in QX. In fact, we have two
products, (f, g) 7→ f ∗ g and (f, g) 7→ g ∗ f , where

(f ∗ g)(t) =

{
f(2t) 0 ≤ t ≤ 1/2
g(2t− 1) 1/2 ≤ t ≤ 1

But QX = Ω2QΣ2X = Ω2X2 as well. The product

(f ∗ g)(t1, t2) =

{
f(2t1, t2) 0 ≤ t1 ≤ 1/2
g(2t1 − 1, t2) 1/2 ≤ t1 ≤ 1,
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and these two products, f ∗ g and g ∗ f , are homotopic, as shown in Figure 3.1. There, the
parts of the rectangle labelled f and g are mapped by f and g respectively after rescaling
the box they are in to the unit square, and everything outside is mapped to the basepoint.

f g g
g

g f g ff
f

Figure 3.1. Homotopy between f ∗ g and g ∗ f in Ω2X2

In fact, there are two homotopies: in one the box containing f travels above that con-
taining g, and in the other, it travels below that containing g (see Figure 3.2).

f g

f g
f

g

g f

g

f

g f

and

Figure 3.2. The two homotopies between f ∗ g and g ∗ f

But QX = Ω3QΣ3X = Ω3X3, so these two homotopies are themselves homotopic: in a
cube, we may rotate the path in which f travels above g into the path in which f travels
below g, say with f ’s path travelling in front and that of g behind. Again, we have two
choices: we could have let f ’s path travel behind and g’s in front. In QX = Ω4QΣ4X, these
two homotopies of homotopies are homotopic, etcetera, ad infinitum.

This infinite sequence of higher homotopies leads to Dyer-Lashof operations

Qi : HnQX −→ Hn+iQX

in the homology of QX with Qn(x) = x2, the Pontrjagin square. In fact, the Dyer-Lashof
operations act on the homology of any infinite loop space E by exactly the same reasoning.
Recall that an em infinite loop space E is a space for which there exist spaces Ei for each
i such that E ∼= ΩE1

∼= Ω2E2
∼= Ω3E3

∼= · · · . For example, E = QX. The infinite
loop spaces QX are special in the sense that the homology of QX is the free module over
the Dyer-Lashof algebra generated by H∗X in the appropriate sense: if x ∈ HnQX then
QiX = 0 if i < n, and Qnx = x2, etc.
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3.4. Steenrod operations in the cohomology of a cocommutative Hopf Algebra

Let A be a cocommutative Hopf algebra over Fp. For example, A could be a group ring
Fp[G] or the mod p Steenrod algebra A.

If M and N are (left) A-modules, then M ⊗ N is naturally a (left) A⊗ A-module, and
pullback along the diagonal map ψ : A −→ A⊗A converts it into an A-module. In formulas,
a(m⊗n) =

∑
a′m⊗a′′n if ψ(a) =

∑
a′⊗a′′. Since A is cocommutative, M ⊗N is naturally

isomorphic to N ⊗M by the obvious transposition.
Let

C : 0←− Fp ←− C0 ←− C1 ←− C2 ←− · · ·

be a free resolution of Fp over A. Then C⊗C is also a free resolution of Fp
∼= Fp⊗Fp. By the

Comparison Theorem in homological algebra, there is a unique chain homotopy class of maps
∆ : C −→ C⊗C covering the isomorphism Fp

∼= Fp⊗Fp. Since A is cocommutative, τ∆ and
∆ are chain maps covering the same homomorphism, and are thus chain homotopic. (Note
that if A were not cocommutative, then τ∆ and ∆ would be mapping to different A-modules,
one with action a(m⊗n) =

∑
a′m⊗a′′n and the other with action a(m⊗n) =

∑
a′′m⊗a′n.)

For example, suppose that A = F2[Z/2] and that C = W is the cellular chain complex
for the standard Z/2-equivariant cell decomposition of S∞. Explicitly, W is the graded
differential A-module free on elements ei ∈ Wi, with differential dei = (1 + T )ei−1, where
Z/2 = {1, T}, and with augmentation ε :W −→ F2, ε(e0) = 1 and ε(ei) = 0 otherwise.

If we start trying to construct the diagonal W −→W ⊗W, we can set ∆(e0) = e0 ⊗ e0,
but then ∆(e1) must be e1⊗e0 +Te0⊗e1 or e0⊗e1 +e1⊗Te0, for example. No symmetrical
choice for ∆(e1) exists.

In general, we can repeat exactly the same sort of iterative construction we have made
in the previous two examples. We have a chain homotopy ∆1 : τ∆ ' ∆, etcetera. The
algebra Ā of operations which we get from this acts naturally on the cohomology H∗A =
ExtA(Fp,Fp) of any cocommutative Hopf algebra A, or more generally on ExtA(M,N) if M
is a coalgebra and N an algebra in the category of A-modules. It is an extension of the usual
Steenrod algebra which acts on the cohomology of topological spaces by the monoid ring on
an operation Sq0:

0 −→ F2[Sq
0] −→ Ā −→ A −→ 0

(We will focus on the case p = 2 for simplicity here. The general case will be dealt with in
the next chapter.) The element Sq0 is central and maps to the identity operation in A.

Since ExtA(Fp,Fp) is bigraded, there are two indices affected by an operation, and there
are two natural indexing conventions one could adopt. One is appropriate to cohomology
operations and will agree with the usual indexing of Steenrod operations on topological
spaces under the isomorphism between the cohomology of a group G and the cohomology
of its classifying space BG, while the other is appropriate to homology operations and will
agree with the Dyer-Lashof operations in the homology of an S-algebra (E∞-ring spectrum
in the older terminology) under the edge homomorphism of the Adams spectral sequence
[12, p. 130]. We shall adopt the former here, since it turns out to be simpler to remember.
In Figure 3.3 we show their location in the (n, s) = (t− s, s) coordinates generally used for
the Adams spectral sequence.
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x2 = Sqsx

Sq0xx
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•

•

•
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•

•

•••

Figure 3.3. Steenrod operations in ExtA(F2,F2)

3.5. Families and the doomsday conjecture

The operation Sq0 has many special properties. It is a ring homomorphism. It is induced
by the squaring map of the dual Steenrod algebra. In particular, in the cobar resolution, it is
given by the formula Sq0[x1| · · · |xk] = [x2

1| · · · |x
2
k] [26]. Elements linked by Sq0 share many

properties. The Hopf invariant one elements hi and the Kervaire invariant one elements h2
i

are connected by Sq0: Sq0(hi) = hi+1 and Sq0(h2
i ) = h2

i+1.

Definition 3.5.1. Given a ∈ ExtA(F2,F2), let a0 = a and ai+1 = Sq0(ai). We call the
collection {ai} of elements of ExtA(F2,F2) a family.

Elements of a family share many properties, with the exception of the first few, generally.
For example, d2(hi+1) = h0h

2
i if i > 0. For reasons which we will discuss in Section 5.5, the

author made the following conjecture in the late 1970’s. It has since been popularized and
studied by Minami [29, 30, 31].

Conjecture 3.5.2 (The New Doomsday Conjecture). Only a finite number of nonzero
elements in a family survive to E∞ of the Adams spectral sequence.

It is called the New Doomsday Conjecture because it is a weaker version of the original
Doomsday Conjecture, due to Joel Cohen, that there are only a finite number of nonzero
elements in each filtration in E∞ of the Adams spectral sequence for π∗S. That conjecture
was probably based on the fact that only a finite number of Hopf invariant one elements
survive to E∞. The name ‘Doomsday Conjecture’ was applied partly because it would imply
there are more differentials than anyone knows how to produce, and also because it would
imply
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Conjecture 3.5.3 (The Kervaire Invariant One Doomsday Conjecture). There are only
a finite number of manifolds of Kervaire invariant one.

This follows from the Doomsday Conjecture because Browder showed ([8]) that a Kervaire
invariant one manifold must have dimension 2(2n−1) for some n and that its existence implies
that h2

n is a permanent cycle in the mod 2 Adams spectral sequence ExtA(F2,F2) =⇒ π∗S
0.

Since the h2
n are all in filtration 2, the Doomsday Conjecture implies that only a finite

number of them can survive to E∞, and hence only a finite number of Kervaire Invariant
One manifolds can exist.

The Kervaire Invariant One Doomsday Conjecture was considered an unpleasant state of
affairs, because the Kervaire invariant one elements are natural candidates for Hopf invariants
of certain elements in the image of the J-homomorphism. In the late 1960’s and early 1970’s
the non-existence of the Kervaire invariant one elements would have left the analysis of
the Image of J in the EHP-sequence in an unclear state. Since then, our understanding of
periodicity and the use of the Adams-Novikov spectral sequence to organize our knowledge of
homotopy have sidestepped the need to solve the Kervaire invariant one problem. Mahowald
[24] provides the definitive study of the Image of J ; a nice summary can be found in Ravenel
[34, pp. 39-44].

Mahowald definitively refuted the original Doomsday Conjecture when he showed that
the filtration 2 elements h1hj all survive to E∞ of the Adams spectral sequence to detect
elements called ηj ∈ π2jS. However, this leaves the New Doomsday Conjecture intact, since
the h1hj do not form a family: Sq0(h1hj) = h2hj+1, Sq

0(h2hj+1) = h3hj+2, etcetera. With
at most three exceptions, these elements are not permanent cycles (Mahowald and Tangora
[25]).

To summarize, the original Doomsday Conjecture is false, but the New Doomsday Con-
jecture and the Kervaire Invariant One Doomsday Conjecture remain open. As noted above,
the elements {h2

i } are a family, so the New Doomsday Conjcture implies the Kervaire In-
variant One Doomsday Conjecture. As of Spring 2000, it is known that h2

n survives to E∞ if
n ≤ 5, and little is known about h2

n for n > 5 (see [30] for a survey of what is known). De-
spite the fact that our study of stable homotopy has largely sidestepped the need to resolve
the Kervaire invariant one problem, it is a dramatic unresolved test problem, and the New
Doomsday Conjecture seems a reasonable conjecture for which there is only a small amount
of evidence either way.
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CHAPTER 4

The General Algebraic Construction of Steenrod Operations

Peter May [26] has defined an algebraic category which carries the minimum structure
needed to define generalized Steenrod operations, including the examples of the preceding
chapter and many more. One can then define Steenrod operations in a particular setting by
defining a functor to his category. In this chapter, we give a summary of the results in [26].

The following diagram shows the relation between the various categories and functors
involved in the three examples of the preceding chapter. In it Sym∞ denotes May’s category,
a category of chain complexes with additional structure to be defined precisely in section 4.3,
Sym1 denotes the category of chain complexes with a homotopy associative product, and
Ch denotes the category of chain complexes. All these are to be taken over Fp. Top is the
category of topological spaces, CocommHopf the category of cocommutative Hopf algebras
(again over Fp), and ∞− LoopSp and LoopSp are the categories of infinite loop spaces and
one-fold loop spaces, respectively. The functors C∗ and C∗ are singular chains and cochains,
and the functor H is homology. All the vertical functors are forgetful functors. We shall be
concerned with Sym∞; the remainder of the diagram is included simply to set the context
for these results.

Top
C∗

''OOOOOOOOOOOOO

CocommHopf // Sym∞
H //

��

A− algebras

��

∞− LoopSp
C∗

77oooooooooooo

��
LoopSp

C∗

// Sym1
H //

��

Graded Fp − algebras

��

Ch
H // Graded Fp −modules

The reader may notice the absence of the category of spectra from this diagram. This is no
accident. The cup product, which gives rise to the Steenrod operations, as in the preceding
chapter, is an unstable operation, being derived from the diagonal map ∆ : X −→ X ×X
of spaces. Most spectra have no such coproduct. This is one of the special properties
of suspension spectra. On the other hand, cohomology, is a stable functor: H∗(ΣX) ∼=
H∗X (with a dimension shift, of course), and the stable cohomology operations such as the
Steenrod operations do act on the cohomology of all spectra. Thus, it is natural, at least
at our present level of understanding of spaces and spectra, that we use the category of
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topological spaces (or if we wish, simplicial complexes) in our construction of the Steenrod
operations, even in the category of spectra.

Dave Benson, in [7], gives an alternative derivation of the Steenrod algebra for the
cohomology of groups (which, by the Kan-Thurston theorem, is the same as the Steenrod
algebra for the cohomology of spaces) from the Evens norm map. The structures we define
here, which give rise to Steenrod operations and their properties, can be recognized in the
symmetries implicit in his definition.

The algebra of operations which apply to all objects of Sym∞ is a universal Steenrod
algebra. When applied to objects of Sym∞ coming from a particular category such as Top,
CocommHopf , or ∞− LoopSp, additional relations hold. In particular, the chain complex
of an infinite loop space is non-negatively graded, and hence bounded below, while the
cochain complex of a topological space or cocommutative Hopf algebra, when thought of as
a negatively graded chain complex (so that its differential will have degree -1), is bounded
above. This gives the Dyer-Lashof algebra, the Steenrod algebra of operations which apply
to the homology of infinite loop spaces, a very different character from the Steenrod algebras
A and Ā which apply to the cohomology of topological spaces and of cocommutative Hopf
algebras, respectively. These latter two are closely related: setting Sq0 (if p = 2) or P0

(if p > 2) to the identity in Ā gives A. Another closely related Steenrod algebra is the
one which applies to the cohomology of simplicial restricted Lie algebras. It is the quotient
of Ā obtained by setting Sq0 or P0 to zero. See May [26] for full details. Note that the
presentation there was motivated by the application to n-fold loop spaces, n ≤ ∞, and that
there are additional operations and other subtleties which pertain when n <∞. The relevant
categories Symn sit between Sym∞ and Sym1 in the obvious way. For our applications, only
n =∞ is relevant.

Suppose that C ∈ Sym∞. The Steenrod operations in H(C) and their properties, will

come from H∗(Σk, Ck), the cohomology of Σk with coefficients in the kth tensor power of
C. Since C is an Fp vector space, we may restrict attention to the Sylow p-subgroup of Σk,
which is the product of iterated wreath products of Cp’s. The way in which the cohomology
of wreath products can be expressed in terms of the cohomology of the factors leads to the
fact that the indecomposable Steenrod operations come from the image of H∗(Σp, Cp) in
H∗(Cp, Cp), while k-fold composites of Steenrod operations are governed by the cohomology
of Σpk and its image in the cohomology of its Sylow p-subgroup Cp o Cp o · · · o Cp, the k-fold
wreath product of Cp wth itself. A fundamental fact, and a remarkable one, is that all
relations among Steenrod operations are generated by the quadratic relations. That is, all
relations follow from the Adem relations, which come from the comparison between Cp o Cp
and Σp2 . The former essentially parameterizes two-fold composites before imposition of the
Adem relations, while the latter takes these relations into account.

Since we are only summarizing the definition and properties of the Steenrod algebra(s)
here, we will not do most of the homological calculations required. However, we need some
small bit of information about the cohomology of the cyclic and symmetric groups to define
the operations. This, we provide in the first section. The section that follows is an interesting
aside, which follows immediately from a mild generalization of the calculation relevant to
the symmetric group. It may safely be skipped by the reader who is interested only in the
Steenrod operations. We then proceed to define Sym∞ and the Steenrod operations.
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4.1. The cohomology of cyclic and symmetric groups

Let Ck be the cyclic group of order k and Σk the symmetric group on k letters. The
following proposition was proved in section 2.5.

Theorem 4.1.1. H∗(C2; F2) = F2[x] and H∗(Cp; Fp) = E[x]⊗Fp[y] if p is an odd prime,
where |x| = 1 and |y| = 2.

We will often write y = x2 when p = 2, so that in all cases, y ∈ H2(Cp; Fp) generates a
polynomial subalgebra. Let us adopt the convention that subscripts indicate a cohomology
class’s degree: we will write xi to mean that xi ∈ H i. The cyclic groups are our one exception
to this convention; their generators are referred to so frequently that the formulas are more
readable without subscripts. Let i : Cp −→ Σp be the inclusion of a Sylow subgroup.

Theorem 4.1.2. If p is an odd prime then H∗(Σp; Fp) = E[x2p−3] ⊗ Fp[y2p−2] and
i∗(x2p−3) = xyp−2 and i∗(y2p−2) = yp−1.

Let Fp(−1) denote Fp with Σp action given by the sign representation: σ · x = sgn(σ)x.
Similarly, Fp(+1) and Fp will denote Fp with the trivial Σp action. Obviously, Fp(k)⊗Fp(j) ∼=
Fp(kj) if we give the tensor product the diagonal action.

Theorem 4.1.3. If p is an odd prime then H∗(Σp; Fp(−1)) is a free module over H∗(Σp; Fp)
on one generator up−1 and i∗(up−1) = y(p−1)/2.

Proof: The first follows from a standard result in the cohomology of groups which identifies
the mod p cohomology of a group with the stable elements in the cohomology of its Sylow
p-subgroup, and can be found in Adem and Milgram [5, 6.6 and 6.8], Benson [6, 3.6.19, p.
68], Brown [9, 10.3] or Thomas [35, 3.2 and 3.4]. An explicit proof of both can be found in
May[1.4]V168. �

4.2. Splittings and the nonabelian groups of order pq

The results of this section are included simply because they shed a little light on the
cohomology calculations of the preceding section, and because the non-abelian groups of
order pq are good test cases for conjectures. First, we need a result about the classifying
space of the cyclic groups.

All these results will be deduced from our knowledge of the cohomology of cyclic groups
by simple algebra from a general splitting result due to Fred Cohen [15], generalizing a
technique used by Richard Holzsager [17].

NB: Look this up to make sure it is quoted correctly. In particular, Σ or Σn and H∗ or
H∗.

Theorem 4.2.1 (Cohen). Let n > 0. The following are equivalent:

(1) (ΣnX)(p) ' A1 ∨ · · ·Ak with H∗Ai ∼= Mi,
(2) There exist fi : (ΣnX)(p) −→ (ΣnX)(p) such that fi∗H∗Σ

nX ∼= Mi, H∗Σ
nX ∼=

⊕Mi, fi∗ : Mi −→ Mi is an isomorphism, and fi∗ : Mi −→ Mj is 0 if i 6= j.

Proof: Certainly, (1) implies (2). For the reverse, let Ai be the mapping telescope

Ai = Tel(ΣnX
fi−→ ΣnX

fi−→ ΣnX
fi−→ · · · ).
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Then we have inclusion maps ΣnX −→ Ai, which induce the projection H∗Σ
nX −→ Mi.

Since ΣnX is a suspension, we may add them to get a map ΣnX −→ A1 ∨ · · ·Ak, which is
a homology isomorphism, and hence an equivalence. �

From this Cohen deduced a result of Mimura, Nishida and Toda [?].

Theorem 4.2.2. Suppose X is a connected H-space of finite type with H∗X or H∗X
primitively generated. Then

(ΣX)(p) ' A1 ∨ · · · ∨ Ap−1

where H∗Ai or H∗Ai, respectively, is spanned by monomials in H∗X or H∗X, resp., (raised
one degree by the suspension) of length congruent to i modulo (p− 1).

Proof [15]: Let θk : X
∆
−→ Xk µ

−→ X, be the composite of the product and the diagonal.
Let {ui} be the primitive generators. Then it follows that θk∗(u1 · · ·uj) = kju1 · · ·uj. Let k
be a unit mod p and let Mt be spanned by the suspensions of the ui1 · · ·uij where kj ≡ t
(mod p). If νi = Σ(i)−θk, where Σ(i) is the degree i map (using the suspension coordinate),
then νi annihilates Mi and is an isomorphism on the otherMj . Thus, fi = ν1◦· · ·◦ν̂i◦· · ·◦νp−1

is an isomorphism on Mi and annihilates the other Mj. The splitting then follows from the
preceding theorem. �

Using this, we split BCp as follows.

Theorem 4.2.3. BCp ' B1 ∨ B2 ∨ · · · ∨ Bp−1 where H∗(Bi; Fp) is nonzero only in
degrees congruent to 2i and 2i− 1 modulo 2(p− 1).

Proof: The monomials of length i are yi and xyi−1, generating degrees 2i and 2i− 1 respec-
tively. �

Now we turn our attention to the non-abelian groups of order pq. If q | p − 1 we may
define a semidirect product Gq,p = Cp o Cq; the extension

Cp C Gq,p −→ Cq

is given by an inclusion Cq >−→ Aut(Cp) ∼= Cp−1. Note that we are assuming that p is
prime, but q may be any divisor of p − 1. The collection {Gq,p} for fixed p is exactly the
collection of subgroups intermediate between Cp and NΣp

(Cp):

Cp = G1,p C Gq,p C Gp−1,p = NΣp
(Cp).

Under inclusions the collection is isomorphic as a lattice to the lattice of divisors of p− 1.

Theorem 4.2.4. Localized at p,

BGq,p ' Bq ∨ B2q ∨ · · · ∨ Bp−1.

In particular, BNΣp
(Cp)(p) ' Bp−1 ' (BΣp)(p) is the dominant summand, which is always

present in a wedge decomposition of BG if G has Sylow p-subgroup Cp.
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Proof: The action of Cq on Cp is the kth power map, where k is a primitive qth root of
1 (mod p). This multiplies by ki in degrees 2i and 2i − 1, so the Cq invariants are exactly
the elements in degrees congruent to 0 and −1 (mod 2q). The inclusion of the Biq into BCp
followed by the natural map into BGq,p is therefore an equivalence. �

4.3. Definition and properties

The category Sym∞ will be the category of Adem and Cartan objects in a category
C(Cp,Fp), which we define now.

Let R be a commutative ring with 1. (It will usually be Fp or Z.) Let π ⊂ Σr be a
subgroup, and let it act on r-fold tensor products of R-modules by permuting factors, and on
tensor products of R[π]-modules diagonally. Let Cp be the cyclic group, Cp =<T | T p = 1> ,
which we include in Σp by sending T to the cyclic permutation (1 2 . . . p). Here p is a prime
which is fixed throughout this section.

Let V be a R[Σr]-free resolution of R. If π = Cp, let W be the standard R[Cp]-free
resolution of R, with each Wi free over R[Cp] on one generator ei, i ≥ 0, with differential

d(e2i) = (1− T )e2i−1 and d(e2i+1) = (1 + T + · · ·T p−1)e2i,

and with augmentation ε(ei) = δi0. Otherwise, let W be any R[π]-free resolution of R.

Definition 4.3.1. Let the category C(π,R) have

objects: (K, θ) such thatK is a Z–graded homotopy associative differential R-algebra,
and θ :W ⊗Kr −→ K is a morphism of R[π]-complexes, satisfying
(1) θ | <e0> ⊗Kr is the r-fold iterated product associated in some fixed order,

and
(2) θ is R[π]-homotopic to a composite

W ⊗Kr −→ V ⊗Kr φ
−→ K

for some R[Σr]-morphism φ.

morphisms: K
f
−→ K ′, a morphism of R-complexes such that

W ⊗Kr θ //

1⊗fr

��

K

f

��
W ⊗K ′

θ′ // K ′

is R[π]-homotopy commutative.

The induced homomorphism

θ∗ : H(W ⊗
Cp

Kp) −→ H(K)

is all we need to define Steenrod operations in H(K). Of course, they will not have many
desirable properties without additional structure.
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Definition 4.3.2. Let (K, θ) ∈ C(Cp,Fp) and let x ∈ Hq(K) be represented by a ∈ K.
Define Di(x) = θ∗(ei ⊗ ap) ∈ Hpq+i(X). If p = 2, let Ps : Hq(K) −→ Hq+s(K) be

Ps(x) =

{
0 s < q
Ds−q(x) s ≥ q

(7)

If p > 2, let Ps : Hq(K) −→ Hq+2s(p−1)(K) be

Ps(x) =

{
0 2s < q
(−1)sν(q)D(2s−q)(p−1)(x) 2s ≥ q

(8)

and βPs : Hq(K) −→ Hq+2s(p−1)−1(K) be

Ps(x) =

{
0 2s ≤ q
(−1)sν(q)D(2s−q)(p−1)−1(x) 2s > q

(9)

where ν(2j + ε) = (−1)j(m!)ε if ε ∈ {0, 1} and m = (p− 1)/2.

For cohomology, we let Ki = K−i, P
s(x) = P−s(x), and βP s(x) = βP−s(x). Then

P s : Hq(K) −→ Hq+s(K) p = 2

P s : Hq(K) −→ Hq+2s(p−1)(K)
βP s : Hq(K) −→ Hq+2s(p−1)+1(K)

}
p > 2

Clearly this is a mere change of notation which does not affect the results. We will state
most of the results in the cohomological form, as this is the application we are interested in
here. One other notational convention should be noted: for the application to loop spaces,
the operation Ps is generally written Qs and called a Dyer-Lashof operation.

The operation βPs is not in general the composite of a Bockstein with Ps. For this to
hold (see the following Proposition) we need to assume that (K, θ) is reduced mod p, i.e.,

(K, θ) = (K̃ ⊗ Fp, θ̃ ⊗ 1) for a flat K̃, where (K̃, θ̃) ∈ C(Cp,Z).
We say that (K, θ) is unital if K has a 2-sided homotopy identity η : R −→ K in C(π,R),

where R is regarded as an object in C(π,R) with θ = ε ⊗ 1 : W ⊗ Rr −→ Rr ∼= R. The
element e = η∗(1) ∈ H0(K) is then the identity element for the product in H∗(K).

Theorem 4.3.3. The operations P s and βP s are natural homomorphisms with the fol-
lowing properties.

(1) The P s and βP s account for all nonzero operations, in the sense that the other Di

are zero.
(2) If x ∈ Hq(K) then

(p = 2) P q(x) = x2

P s(x) = 0 s > q

(p > 2) P s(x) = xp 2s = q
P s(x) = 0 2s > q
βP s(x) = 0 2s ≥ q

(3) If p > 2 and (K, θ) is reduced mod p then βP s is the composite of the Bockstein and
P s. If p = 2 then composition with the Bockstein β satisfies βP s−1 = sP s.

(4) If (K, θ) is unital then P s(e) = 0 if s 6= 0 and βP s(e) = 0 for all s.
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Proof: This is proved in [26, 2.3, 2.4 and 2.5]. Note that (1) follows from the way that the
cohomology of the symmetric group restricts to its Sylow p-subgroup (4.1.2 and 4.1.3). �

Define a tensor product for (K, θ) and (K ′, θ′) in C(π,R) by (K ⊗K ′, θ̃), where θ̃ is the
composite

W ⊗ (K ⊗K ′)r
ψ⊗σ
−→ W ⊗W ⊗Kr ⊗K ′r

1⊗τ⊗1
−→ W ⊗Kr ⊗W ⊗K ′r

θ⊗θ′
−→ K ⊗K ′

Here the diagonal map ψ :W −→W⊗W is any R[π]-homomorphism covering R ∼= R⊗R,
σ : (K ⊗K ′)r −→ Kr ⊗K ′r is the shuffle permutation, and τ is the transposition.

Definition 4.3.4. We say that (K, θ) is a Cartan object if the product K ⊗K −→ K is
a morphism in C(π,R).

Theorem 4.3.5. If (K, θ) and (L, θ′) are objects of C(Cp,Fp), x ∈ Hq(K) and y ∈ Hr(L),
then the external Cartan formulas hold:

P s(x⊗ y) =
∑

i+j=s

P i(x)⊗ P j(y)

and, if p > 2 then

βP s(x⊗ y) =
∑

i+j=s

βP i(x)⊗ P j(y) + (−1)qP i(x)⊗ βP j(y).

If (K, θ) is a Cartan object, then the internal Cartan formulas hold:

P s(xy) =
∑

i+j=s

P i(x)P j(y)

and, if p > 2 then

βP s(xy) =
∑

i+j=s

βP i(x)P j(y) + (−1)qP i(x)βP j(y).

Proof: Proposition 2.6 and Corollary 2.7 of [26]. �

Our last piece of structure gives rise to the Adem relations. Let Y be an R[Σp2 ]-free
resolution of R. Recall that, Cp o Cp is a Sylow p-subgroup of Σp2 , by letting the normal
Cp
p C Cp oCp act by cyclic permutations within p disjoint blocks of size p, and the quotient

Cp act by cyclically permuting these blocks. With its evident Cp oCp action, W ⊗ (W)p is a
Cp oCp-free resolution of R. By restriction from Σp2 to Cp oCp, Y is also, so there is a natural
Cp oCp homomorphism w :W⊗ (W)p −→ Y , unique up to Cp oCp chain homotopy, covering
the identity map of R.
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Definition 4.3.6. We say that (K, θ) ∈ C(Cp,Fp) is an Adem object if there exists a Σp2

equivariant homomorphism ξ : Y ⊗Kp2 −→ K, such that the diagram

(W ⊗Wp)⊗Kp2
w⊗1 //

1⊗σ

��

Y ⊗Kp2

ξ

##HHHHHHHHH

K

W ⊗ (W ⊗Kp)p
1⊗θp

//W ⊗Kp

θ

::vvvvvvvvvv

is CpoCp-equivariantly homotopy commutative, where σ is the evident shuffle homomorphism.

Theorem 4.3.7. If (Ki, θi) are Adem objects, i = 1, 2, then (K1, θ1) ⊗ (K2, θ2) is an
Adem object.

In order to state the Adem relations in a uniform manner let us adopt the convention
that β0P s = P s and β1P s = βP s. In the cohomology of an object which is reduced mod p,
these are true formulas, but in general they are merely notational conventions. If p = 2 then
we require ε = 0 when we write βεP s. Recall the ‘sideways’ notation for binomial coefficients:
(n,m) = (n +m)!/n!m!.

Theorem 4.3.8. The following relations hold on the cohomology of any Adem object.

(1) If a < pb then

βεP aP b =
∑

i

(−1)a+i
(

(p− 1)(b− i)− 1
a− pi

)
βεP a+b−iP i

(2) If p > 2 and a ≤ pb then

βεP aβP b = (1− ε)
∑

i

(−1)a+i
(

(p− 1)(b− i)− 1
a− pi

)
βP a+b−iP i

−
∑

i

(−1)a+i
(

(p− 1)(b− i)− 1
a− pi− 1

)
βεP a+b−iβP i

Proof: This is Corollary 5.1 of [26], which is a reindexing for cohomology of Theorem 4.7
there. (Note that the first binomial coefficient in the second equation has a typographical
error in [26] which we have corrected here.) �

For applications to topological spaces or simplicial sets, the necessary structure maps
come from the diagonal mapsX −→ Xr, which are perfectly symmetric in that they commute
with all permutations of coordinates in Xr, together with the Alexander-Whitney maps,
which relate the (co)chains of the product to the tensor product of the (co)chains. As noted
in the previous chapter, this can only be symmetric up to chain homotopies, and these
homotopies are neatly encoded in the homomorphisms θ :W ⊗ C∗(X)r −→ C∗(X). This is
worked out in detail in [26, Sections 7 and 8], where the following proposition is also shown
to apply to any object whose coproduct is simply the diagonal map D(x) = (x, x).
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Theorem 4.3.9. In the cohomology of topological spaces or simplicial sets, P 0 is the
identity operation.

We reserve the notation A for this version of the Steenrod algebra. It is generated
by β and the P s, s > 0, modulo the ideal generated by the Adem relations. That these
are all the relations follows from the action of A on the cohomology of the elementary
abelian groups, as shown by Serre ([?]). The method of proof is straightforward. First
note that the Adem relations allow one to express every element in terms of the admissable
operations, those in which each successive pair P aP b satisfies a ≥ b and each successive pair
P aβP b satisfies a > pb. Then the Cartan formula allows one to easily calculate the action
on H∗(BCp × · · ·BCp) and find a monomial for each admissable operation, on which it
acts nontrivially, but all earlier monomials in lexicographic ordering act trivially. (CHECK
ORDERING)

The algebra Ā of operations which act on the cohomology of cocommutative Hopf alge-
bras arises similarly from the coproduct of the Hopf algebra together with the Alexander-
Whitney maps, purely by homological arguments. This was observed by Liulevicius ([22]).
The details can be seen there or in [26] or [12, IV.2]. In contrast to the topological case,

P 0 : Exts,t −→ Exts,pt

so P 0 cannot act as the identity except in internal degree t = 0. In fact, Liulevicius shows
that in the cobar construction,

P 0[a1| . . . |ak] = [ap1| . . . |a
p
k]

Applying this formula to the cohomology of the mod 2 Steenrod algebra, where hi = [ξ2i

1 ],
we see immediately that

Sq0hi = hi+1

Sq1hi = h2
i , and

Sqjhi = 0 if j > 1,

the latter two following from the fact that hi ∈ Ext1. (He also shows similar results at odd
primes, and used them to solve the odd primary analog of the Hopf invariant one problem.)

Remark 4.3.10. At first it appears that the Adem relations in Ā are homogeneous: for
example, instead of Sq1Sq2 = Sq3, an inhomogeneous relation in the usual Steenrod algebra,
we have Sq1Sq2 = Sq3Sq0 in Ā. However, this appearance is an illusion, because the
algebras A and Ā are augmented algebras, and generators for augmented algebras should
lie in the augmentation ideal. Since Sq0 maps to the identity operation in A, it must
have augmentation 1 for the quotient map Ā −→ A to be a map of augmented algebras.

The appropriate generator of degree 0 and augmentation 0 is Sq
0

= Sq0 − 1, and the

inhomogeneities then reappear: Sq1Sq2 = Sq3Sq
0
+Sq3. This is relevant to attempts to use

Priddy’s method of Koszul resolutions to obtain information about H∗A from H∗Ā. If Ā
were in fact homogeneous, its cohomology would be easily computed. As it turns out, H∗Ā
is simply the tensor product of H∗A and an exterior algebra on 1 generator (traditionally
called λ−1) dual to Sq0. See [11] for details.
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