R. Bruner Math 5520, Winter 2010, Homework 1 11 January 2010 (due 15 January 2010)

- 1. Find a continuous function with continuous inverse from the open interval (0, 1) to the real line \mathbb{R}^1 . Give formulas for both the function and its inverse.
- 2. Complete the classification of regular polyhedra begun in class (and in section 1 of the text), as follows. For each possible value of
 - a = number of edges per face, and
 - b = number of edges per vertex,

compute V, E, F to satisfy Euler's formula V - E + F = 2 and identify the corresponding polyhedron from Figure 1.9 or state that no such polyhedron exists.

	a = 3	a = 4	a = 5	a = 6
b = 3	E = 6 $V = F = 4$ tetrahedron			Impossible
b = 4				
b = 5				
b = 6				

- 3. Problem 10 on page 11. Can you see a geometric explanation of this duality?
- 4. Compute the Euler characteristics of the complexes in Figure 13 on page 4.