Math 5420, Fall 2015, Test 4 R. Bruner December 11, 2015

Read all the problems quickly before starting work. Turn in your bluebook and keep this list of questions for later reference.

- 1. For each of the following, decide whether it is
 - a field,
 - an integral domain but not a field, or
 - not an integral domain:
 - (a) $\mathbf{Q}[x]/(x^2+1)$
 - (b) $\mathbf{Z}_3 \times \mathbf{Z}_5$
 - (c) $\mathbf{Z}_3[x]$
 - (d) $\mathbf{Z}_3[x]/(x^3 + x + 1)$
- 2. Show that a field is an integral domain.
- 3. Show that if I is a maximal ideal in a commutative ring R then R/I is a field.
- 4. In the field $\mathbf{Z}_2[x]/(x^3 + x + 1)$, find the multiplicative inverse of x + 1.
- 5. Compute the kernel and image of the (unique) ring homomorphism $\mathbf{Z} \longrightarrow \mathbf{Z}_6 \oplus \mathbf{Z}_9$.

_____ The End _____