Math 5420, Fall 2015, Test 2 R. Bruner October 14, 2015

Read all the problems quickly before starting work. Turn in your bluebook and keep this list of questions for later reference.

- 1. (25 points) Express these permutations as products of disjoint cycles and determine their order.
 - (a) (123)(234)
 - (b) (123)(234)(345)
 - (c) (1234)(2345)
 - (d) (1234)(3456)
 - (e) (1234)(4567)
- 2. (10 points) Find all four subgroups of \mathbf{Z}_6 .
- 3. (10 points) Find an isomorphism $\mathbf{Z}_2 \times \mathbf{Z}_2 \xrightarrow{\phi} \mathbf{Z}_8^{\times}$.
- 4. (10 points) Let G be a group of prime order p = |G|. Suppose that $a \in G$ and $a \neq e$. Show that $\langle a \rangle = G$.
- 5. (10 points) Let G be a group of odd order and suppose that $g \in G$ satisfies $g^2 = e$. Show that g = e.

- 6. (10 points) Show that the following pairs of groups are not isomorphic. (In each case, there is a simple property that distinguishes them.)
 - (a) S_3 and S_4
 - (b) S_3 and \mathbf{Z}_6
- 7. (10 points) Let G be a group.
 - (a) Show that if $a \in G$ then $a^2 = e$ if and only if $a = a^{-1}$.
 - (b) Show that if |G| is even then there must be an element $a \neq e$ such that $a^2 = e$.
- 8. Let G be a group, and let $g \in G$. Define

$$I = \{k \in \mathbf{Z} \mid g^k = e\}.$$

- (a) (10 points) Show that I is closed under addition and subtraction.
- (b) (5 pts) This implies that $I = d\mathbf{Z}$ for some d. What do we call d?

_____ The End _____