Math 5420, Fall 2015, Test 1 R. Bruner September 25, 2015

Read all the problems quickly before starting work. Turn in your bluebook and keep this list of questions for later reference.

- 1. (10 points) Find the gcd (276, 120) and express it as a linear combination of 276 and 120.
- 2. (10 points) Find all integers x such that $9x \equiv 3 \pmod{15}$.
- 3. (10 points) Find all integers x such that both of the following congruences hold:
 - $x \equiv 9 \pmod{10}$ and
 - $x \equiv 10 \pmod{11}$.
- 4. (10 points each) Give an example to show that if an integer divides a product, it does not have to divide either factor.
- 5. (10 points) Let $f : \mathbf{Z}_{40} \longrightarrow \mathbf{Z}_{40}$ be $f([x]_{40}) = [7x+3]_{40}$.
 - (a) Show that f is one-to-one.
 - (b) Show that f is onto.
- 6. (10 points) Explain why the formula f([2x]) = [3x] defines a welldefined function $\mathbf{Z}_7 \longrightarrow \mathbf{Z}_7$ but not $\mathbf{Z}_8 \longrightarrow \mathbf{Z}_8$.
- 7. (10 points) Let n > 1 be an integer, and let $a \in \mathbb{Z}$. Define

 $I = \{k \in \mathbf{Z} \mid ka \equiv 0 \pmod{n}\}.$

Show that I is closed under addition and subtraction.

- 8. (20 points) Consider \mathbf{Z}_{30} and \mathbf{Z}_{30}^{\times} .
 - (a) Find a positive integer k such that $[a]_{30}^k = [1]$ for every $[a]_{30} \in \mathbf{Z}_{30}^{\times}$.
 - (b) How many elements are in \mathbf{Z}_{30}^{\times} ?
 - (c) Can you find $[a]_{30} \in \mathbb{Z}_{30}^{\times}$ such that the powers of $[a]_{30}$ give all the elements of \mathbb{Z}_{30}^{\times} ?
 - (d) If $[a]_{30} \in \mathbf{Z}_{30}^{\times}$ show that $g : \mathbf{Z}_{30} \longrightarrow \mathbf{Z}_{30}$ by $g([x]_{30}) = [ax]_{30}$ is a one-to-one correspondence.
- 9. (10 points) Show that if $99x \equiv 0 \pmod{n}$ and $40x \equiv 0 \pmod{n}$ then $x \equiv 0 \pmod{n}$.

_____ The End _____