Math 5420, Fall 2014, Test 3 R. Bruner 13 November 2014

Read all the problems quickly before starting work.

Turn in your bluebook and keep this list of questions for later reference.

- 1. (10 points) Is $\langle (1234) \rangle$ a normal subgroup of S_4 ?
- 2. (10 points) Define one-to-one homomorphisms $\mathbf{Z}_4 \longrightarrow S_4$ and $\mathbf{Z}_2 \times \mathbf{Z}_2 \longrightarrow S_4$.
- 3. (10 points) Let H < G and $a, b \in G$. Show that if aH = Hb then aH = Ha.
- 4. (10 points) Recall that the center of a group G is

 $Z(G) = \{ g \in G \mid ag = ga \text{ for all } a \in G \}.$

Show that the Z(G) is a normal subgroup.

- 5. (10 points) Let $f: G \longrightarrow H$ be a group homomorphism. Show that $K = \ker(f)$ is a normal subgroup of G.
- 6. (10 points) Show that in a field F, a · 0 = 0 for all a ∈ F.
 (Use only the definition of a field; that is, do not just say 'Proposition X says this is true'.)
- 7. Let F be a field.
 - (a) (10 points) Show that if $a, b \in F$ and ab = 0, then a = 0 or b = 0.
 - (b) (5 points) Show that if $f, g \in F[x]$ and fg = 0, then f = 0 or g = 0.
- 8. (a) (8 points) In Q[x], compute gcd(x³ 1, x⁵ 1).
 (b) (7 points) Write the gcd as a linear combination of x³ 1 and x⁵ 1.
- 9. (10 points) Factor $x^4 + 3x^2 + 2$ into irreducible factors in $\mathbf{Z}_5[x]$ and find its roots in \mathbf{Z}_5 .

_____ The End _____