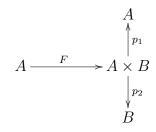
Math 5420, Fall 2014, Test 1 R. Bruner September 18, 2014

Read all the problems quickly before starting work. Turn in your bluebook and keep this list of questions for later reference.


- 1. (5 points) Find the gcd (282, 114) and express it as a linear combination of 282 and 114.
- 2. (10 points) Find all integers x such that 3x 9 is divisible by 13.
- 3. (10 points) Find all integers x such that both of the following congruences hold:
 - $x \equiv 3 \pmod{5}$ and
 - $x \equiv 6 \pmod{7}$.
- 4. (10 points) Let $f : \mathbf{Z}_{12} \longrightarrow \mathbf{Z}_{12}$ be $f([x]_{12}) = [7x+3]_{12}$.
 - (a) Compute $f \circ f$.
 - (b) Is f one-to-one?
 - (c) Is f onto?
- 5. (10 points) Does the formula $f(m/n) = (n-m)/n^2$ give a well-defined function from the rationals to the rationals? Why or why not?
- 6. (10 points) Let n > 1 be an integer, and let $[a]_n \in \mathbf{Z}_n^{\times}$. That is, (a, n) = 1. Define

$$I = \{ k \in \mathbf{Z} \mid [a]_n^k = [1]_n \}.$$

Show that I is closed under addition and subtraction.

- 7. (15 points) Consider \mathbf{Z}_{18}^{\times} .
 - (a) Find a positive integer k such that $[a]_{18}^k = [1]$ for every $[a]_{18} \in \mathbf{Z}_{18}^{\times}$.
 - (b) How many elements are in \mathbf{Z}_{18}^{\times} ?

- (c) Can you find $[a]_{18} \in \mathbf{Z}_{18}^{\times}$ such that the powers of $[a]_{18}$ give all the elements of \mathbf{Z}_{18}^{\times} ?
- 8. (10 points) Show that if $[x]_n^{10} = [1]_n$ and $[x]_n^7 = [1]_n$. then $[x]_n = [1]_n$.
- 9. (20 points) Suppose that A is a non-empty set and that $f : A \longrightarrow B$ is a function. Define functions F, p_1 , and p_2 , as shown here

- by $F(a) = (a, f(a)), p_1(a, b) = a$, and $p_2(a, b) = b$.
- (a) Compute $p_1 \circ F$.
- (b) Compute $p_2 \circ F$.
- (c) Show that F is one-to-one.
- (d) Show that p_2 is onto.

_____ The End _____