Math 2250, Fall 2015, Test 2	October 30, 2015	R. Bruner
1. Find the coordinates of the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1\\2 \end{bmatrix}$ with respect to the basis	$\left[\begin{array}{c}1\\-3\end{array}\right], \left[\begin{array}{c}1\\2\end{array}\right].$
2. The row operations		
$R_1 \longleftrightarrow R_3, \qquad R_2 + 5R_1 \longrightarrow R_2,$	$\frac{1}{4}R_3 \longrightarrow R_3$, and	$R_3 + R_2 \longrightarrow R_3$
were used to reduce the matrix A to		
	$ \left[\begin{array}{cccc} 4 & 1 & 7 \\ 0 & 3 & 3 \\ 0 & 0 & 6 \end{array} \right] $	

What is det(A)?

The next four problems concern the matrix A, which has reduced row echelon form R:

A =	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	2	-1	0	-2	\longrightarrow		1	0	2	0	1	-2
	$\begin{vmatrix} 0\\1 \end{vmatrix}$	$\frac{1}{2}$	$-3 \\ -4$	$\frac{2}{4}$	$\frac{2}{5}$	$\begin{bmatrix} -1 \\ -4 \end{bmatrix}$		R =	0	$\frac{1}{0}$	$-3 \\ 0$	0 1	0 1	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$
	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	$\frac{2}{2}$	-2^{-1}	3	5	-6			0	0	0	0	0	$\begin{bmatrix} 0\\0 \end{bmatrix}$

3. Find a basis \mathcal{C} for the column space $\operatorname{col}(A)$.

4. What are the dimensions $\dim(\operatorname{col}(A))$ and $\dim(\operatorname{nul}(A))$?

5. Find a basis \mathcal{N} for the null space nul(A).

- 6. Find a matrix N with col(N) = nul(A).
- 7. Write 3×3 elementary matrices which correspond to the following row operations

(a)
$$R_2 \longleftrightarrow R_3$$
 (b) $R_1 + 5R_3 \longrightarrow R_1$ (c) $4R_1 \longrightarrow R_1$

8. Compute the determinant and inverse of

10. For each of the following, determine whether it is a subspace of \mathbf{R}^2 or not.

(a) The vectors
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 such that $x = 1$.
(b) The vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that $x = y + z$.
(c) The vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that $x = y + z$ and $x + y = z$.
(d) The vectors $\begin{bmatrix} a+1 \\ b+1 \end{bmatrix}$ for all real numbers a and b .
(e) The vectors $\begin{bmatrix} a \\ b \\ b-a \end{bmatrix}$ for all real numbers a and b .

11. (5) Which of these are bases for R^3 ?

(a)
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\3\\0 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\3\\0 \end{bmatrix} \right\}$$

(d)
$$\left\{ \begin{bmatrix} 0\\0\\7\\7 \end{bmatrix}, \begin{bmatrix} 0\\3\\0\\4 \end{bmatrix}, \begin{bmatrix} 9\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 6\\2\\5 \end{bmatrix} \right\}$$

(e)
$$\left\{ \begin{bmatrix} 1\\2\\7\\7 \end{bmatrix}, \begin{bmatrix} 3\\0\\4\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 6\\2\\5 \end{bmatrix} \right\}$$