Name: _____

Worksheet and Quiz 3 Math 2250, Fall 2015

September 23, 2015

R. Bruner

1. Let T be a linear transformation $\mathbf{R}^2 \longrightarrow \mathbf{R}^3$. such that

$$T\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}7\\1\\3\end{bmatrix} \quad \text{and} \quad T\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}1\\1\\-1\end{bmatrix}$$

(a) Find $T\begin{bmatrix} 1\\5 \end{bmatrix}$.

(b) Find the matrix representation of T.

2. Let T be a linear transformation $\mathbf{R}^2 \longrightarrow \mathbf{R}^3$ such that

$$T\begin{bmatrix} 1\\1\\\end{bmatrix} = \begin{bmatrix} 7\\1\\3\\\end{bmatrix} \quad \text{and} \quad T\begin{bmatrix} 1\\2\\\end{bmatrix} = \begin{bmatrix} 1\\1\\-1\\\end{bmatrix}.$$
(a) Write $\begin{bmatrix} 0\\1\\\end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\1\\\end{bmatrix}$ and $\begin{bmatrix} 1\\2\\\end{bmatrix}.$
(b) Find $T\begin{bmatrix} 0\\1\\\end{bmatrix}.$
(c) Write $\begin{bmatrix} 1\\0\\\end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\1\\\end{bmatrix}$ and $\begin{bmatrix} 1\\2\\\end{bmatrix}.$
(d) Find $T\begin{bmatrix} 1\\0\\\end{bmatrix}.$

(e) Find the matrix representation of T.

- 3. How many vectors can a linearly independent set in ${\bf R}^3$ have? Choose as many as are correct:
 - (a) 1?
 - (b) 2?
 - (c) 3?
 - (d) 4?
 - (e) 5?
 - (f) infinitely many?

- 4. Write the equation which expresses the fact that $\begin{bmatrix} 7\\5 \end{bmatrix}$ is in the span of
 - $\begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\-1 \end{bmatrix}.$

You may use indeterminate coefficients x_i . You do not need to find the values of the coefficients.

5. Find all ways of writing $\begin{bmatrix} 7\\5 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\-1 \end{bmatrix}$.

6. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{a}_3 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ and $\mathbf{a}_4 = \begin{bmatrix} 4 \\ 0 \\ 4 \end{bmatrix}$.

- (a) Show that $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$ is linearly dependent by finding a nontrivial linear combination of the vectors which is 0.
- (b) Find a linearly independent subset of them which contains as many vectors as possible.
- (c) Express the remaining vector (or vectors) as a linear combination of your linearly independent subset.

7. If \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 , are linearly independent and \mathbf{a}_4 is not in their span, show that $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$ is linearly independent.

8. Suppose that $\mathbf{a}_1 - 2\mathbf{a}_2 + \mathbf{a}_4 = 0$ and $\mathbf{a}_1 + \mathbf{a}_3 + \mathbf{a}_5 = 0$. Show that $\{\mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5\}$ is linearly dependent.