R. Bruner Math 2250, Fall 2008, Test 2 November 7, 2008

Instructions:

- 1. For full credit, explain your reasoning.
- 2. Quickly read the whole test before beginning work.
- 3. The following notation will be used throughout this test:
 - ${\bf R}\,$ is the real numbers.
 - \mathbf{R}^n is the Euclidean space of dimension n.
 - ${\cal P}\,$ is the vector space of all polynomials.
 - P_k is the vector space of all polynomials of degree at most k.
 - F is the vector space of all functions $\mathbf{R} \longrightarrow \mathbf{R}$.

Questions:

- 1. (5 each) Each of the following is a subset of one of the vector spaces above. Determine whether or not they are subspaces and explain why.
 - (a) Functions $f : \mathbf{R} \longrightarrow \mathbf{R}$ satisfying f(3) = 0.
 - (b) Functions $f : \mathbf{R} \longrightarrow \mathbf{R}$ satisfying f(0) = f(3).
 - (c) Vectors in \mathbf{R}^5 satisfying $x_1 = x_3$ and $x_2 = 7x_5$.
 - (d) Vectors in \mathbf{R}^5 satisfying $x_1 = x_3$ and $x_2 = 7 + x_5$.
- 2. (5 each) Are the following sets of vectors linearly independent or not?
 - (a) In \mathbb{R}^{3} , $\begin{cases}
 \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}
 \end{cases}$ (b) In \mathbb{R}^{5} , $\begin{cases}
 \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}, \begin{bmatrix} 5\\4\\3\\2\\1 \end{bmatrix}
 \end{cases}$ (c) In P_{2} , $\begin{cases}
 x^{2}, x^{2} - 1, x^{2} - 2
 \end{cases}$

3. (5 each) Do the following sets of vectors span the indicated subspace or not?

(a) Polynomials in P_3 which are 0 at x = -1:

$$\left\{x+1, x^2+x, x^2-1\right\}$$

(b) Vectors in \mathbf{R}^5 satisfying $x_1 = x_3 = x_5$ and $x_4 = 2x_2$:

$$\left\{ \begin{bmatrix} 1\\1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\2\\2\\2 \end{bmatrix} \right\}$$

– Continued on reverse –

4. (5 each) Let $A : \mathbf{R}^4 \longrightarrow \mathbf{R}^4$ be

- (a) Find a basis for the column space Im(A).
- (b) Find a basis for the nullspace Ker(A).
- 5. (5 each) Consider the vectors

[1]		[1]		[1]		0		[0]	
0		1		0		1		0	
1	,	0	,	0	,	0	,	1	
				1		1		1	

- (a) Find a nontrivial linear combination of them.
- (b) Find a basis for their span.
- 6. (5) If $A : \mathbb{R}^5 \longrightarrow \mathbb{R}^2$ and Ax = b is solvable for every $b \in \mathbb{R}^2$, what is the dimension of the nullspace Ker(A)?
- 7. (5) Expand to form a basis of P_3 : $\{x 1, x^2 x\}$.
- 8. (5) What is the matrix of a linear transformation $\mathbf{R}^3 \longrightarrow \mathbf{R}^4$ which sends

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} \text{to} \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{to} \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix}, \text{ and } \begin{bmatrix} 0\\0\\1 \end{bmatrix} \text{to} \begin{bmatrix} 5\\0\\0\\0 \end{bmatrix}?$$

9. (10) Find the coordinates of $x^3 - 3x^2 - 2x + 2$ relative to the basis

 $\{x+1, x^2+x, x^3+x^2\}$

for the space of all polynomials in P_3 which are 0 at x = -1.

– The End –