R. Bruner Math 2250, Fall 2008, Quiz 6 October 17, 2008

1. Complete to form a basis for \mathbf{R}^4 :

$$\left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix} \right\}$$

2. Discard vectors to get a basis for \mathbf{R}^3 :

$$\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix}, \begin{bmatrix} 3\\3\\1 \end{bmatrix} \begin{bmatrix} 4\\4\\0 \end{bmatrix} \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}$$

- 3. Suppose A is a 3 by 5 matrix, i.e., a linear transformation $\mathbf{R}^5 \longrightarrow \mathbf{R}^3$.
 - (a) If the rank of A is 2 then
 - i. Can we solve Ax = b for all vectors b in \mathbb{R}^3 ?
 - ii. What is the dimension of the space of solutions to Ax = 0?
 - (b) If the rank of A is 3 then
 - i. Can we solve Ax = b for all vectors b in \mathbb{R}^3 ?
 - ii. What is the dimension of the space of solutions to Ax = 0?