R. Bruner Math 2250, Fall 2008, Homework 2 September 5, 2008

- 1. In each case below, find a linear transformation $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ satisfying the conditions:
 - (a) f(1,0) = 3 and f(0,1) = 2
 - (b) f(1,1) = 3 and f(1,2) = 2
 - (c) f(1,2) = 3 and f(2,1) = 2
- 2. Describe the set of all linear combinations of the vectors (2,3) and (6,9). Explain why (1,0) cannot be expressed as a linear combination of (2,3) and (6,9). (Hint: graph them.)
- 3. Express the vectors (1,0) and (0,1) as linear combinations of the following pairs of vectors:
 - (a) (1,2) and (2,-1)
 - (b) (1,2) and (5,-4)
 - (c) (5,7) and (8,3)
- 4. Draw the geometric pictures associated with the linear combinations in problem 3.
- 5. Let $f: \mathbf{R}^2 \longrightarrow \mathbf{R}$ be a linear transformation.
 - (a) Show that there is a nonzero vector \vec{u}_1 such that $f(\vec{u}_1) = 0$. (Hint: start by writing f in the form Ax + By.)
 - (b) Show that $f(c\vec{u}_1) = 0$ for every real c, where \vec{u}_1 is the vector from part 5a.
 - (c) Show that if $f(\vec{u}_2) = 0$ for some vector \vec{u}_2 not parallel to \vec{u}_1 then $f(\vec{v}) = 0$ for every vector $v \in \mathbf{R}^2$.
- 6. Let $f : \mathbf{R}^2 \longrightarrow \mathbf{R}$ be the linear transformation f(x, y) = 3x 2y.
 - (a) Find the set N of all vectors \vec{u} such that $f(\vec{u}) = 0$.
 - (b) Find the set S_1 of all vectors \vec{v} such that $f(\vec{v}) = 1$.
 - (c) Find the set S_2 of all vectors \vec{w} such that $f(\vec{w}) = 2$.
 - (d) Graph the sets N, S_1 and S_2 on the same set of axes.
 - (e) What can you say about the relation between these three sets?