R. Bruner Math 2030, Winter 2016, Test 3 March 29, 2016

- 1. Polar and cylindrical coordinates: Draw the diagram which shows the relation between (x, y) and (r, θ) . Write the formulas for
 - (a) x and y in terms of r and θ ,
 - (b) for $dA = dx \, dy$ in terms of r, θ, dr and $d\theta$,
 - (c) for $dV = dx \, dy \, dz$ in terms of $r, \theta, z, dr, d\theta$ and dz.
- 2. Spherical coordinates: Draw the diagram which shows the relation between (r, z) and (ρ, ϕ) . Write the formulas for
 - (a) r and z in terms of ρ and ϕ ,
 - (b) for dA = dr dz in terms of ρ , ϕ , $d\rho$ and $d\phi$,
 - (c) for $dV = dx \, dy \, dz$ in terms of ρ , θ , ϕ , $d\rho$, $d\theta$ and $d\phi$.
- 3. Suppose that $1 \le f(x, y) \le 4 x y$ for all (x, y) in the first quadrant. What can you say about $\iint_R f \, dA$, if R is the rectangle $[0, 2] \times [0, 1]$?
- 4. Find the area and centroid of the region in the first quadrant below y = 4 and above $y = x^2$.
- 5. Find the area and centroid of the region $0 \le r \le \sin 2\theta$ in the first quadrant. (Hint: You may use the fact that $\int_0^{\pi} \sin^2(u) du = \pi/2$.)
- 6. Suppose that x and y are functions of u and v in such a way that

$$\frac{\partial(x,y)}{\partial(u,v)} = u + v.$$

Suppose that R is the region in the (x, y) plane obtained by applying this transformation to the rectangle $2 \le u \le 5$, $1 \le v \le 3$. What is the area of R?

- 7. Find the volume of the region described by $0 \le r \le \sin(z)$, $0 \le z \le \pi$, in cylindrical coordinates. (Recall hint from problem 5.)
- 8. Let R be the same region as in the preceding problem. Find the centroid of R about the z-axis. (Hint: You may use the fact that $\int_0^{\pi} \sin^4(u) du = 3\pi/8$.)
- 9. Find the volume of the region inside $\rho = 1 + \cos(\phi)$ in spherical coordinates.
- 10. Find the z-coordinate, \bar{z} , of the centroid of the solid in the preceding problem.

_____ The End _____