Name:			

Math 2030, Winter 2016, Quiz 9 24 March 2016 R. Bruner

- 1. Polar and cylindrical coordinates: Draw the diagram which shows the relation between (x, y) and (r, θ) . Write the formulas for
 - (a) x and y in terms of r and θ ,
 - (b) for dA = dx dy in terms of r, θ , dr and $d\theta$,
 - (c) for dV = dx dy dz in terms of r, θ , z, dr, $d\theta$ and dz.
- 2. Spherical coordinates: Draw the diagram which shows the relation between (r,z) and (ρ,ϕ) . Write the formulas for
 - (a) r and z in terms of ρ and ϕ ,
 - (b) for dA = dr dz in terms of ρ , ϕ , $d\rho$ and $d\phi$,
 - (c) for dV = dx dy dz in terms of ρ , θ , ϕ , $d\rho$, $d\theta$ and $d\phi$.
- 3. Find the volume of the region described by $0 \le r \le z^2 z^3$ in cylindrical coordinates.

- (a) $x = r\cos\theta$ $y = r\sin\theta$
- (b) dA=rdrd0
- (c) dV = rdrd&dZ

- (a) $r = \rho \sin \phi$ $z = \rho \cos \phi$
- (b) dA = drdz= pdpdd
- (c) dV = dx dy dz= $\rho^2 \sin \phi d\rho d\theta d\phi$

$$\frac{2^{2}-2^{\frac{3}{2}}}{2^{2}(1-t)=0} = 0$$

$$\frac{2^{2}(1-t)=0}{2^{2}(1-t)=0}$$

$$\frac{2^{2}(1-t)=0}{2^{2}(1-t)=0}$$

$$\frac{2^{2}(1-t)=0}{2^{2}(1-t)=0}$$

$$\frac{2^{2}(1-t)=0}{2^{2}(1-t)=0}$$

$$Vol = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{2^{2}z^{2}} r \, dr \, dz \, dz$$

$$= 2\pi \int_{0}^{1} \frac{1}{2} r^{2} \Big|_{0}^{2^{2}-z^{3}} \, dz$$

$$= \pi \int_{0}^{1} \frac{1}{2^{4}-2z^{5}+z^{6}} \, dz$$

$$= \pi \left(\frac{1}{5} - \frac{2}{6} + \frac{1}{7}\right)$$

$$= \pi \frac{21-35+15}{105} = \pi$$