Name:	
1 0 200 0	
Name.	
TI COLLIE	

Math 2030, Winter 2016, Quiz 2 22 January 2016 R. Bruner

No calculators needed or allowed.

Let $\vec{r_0} = (1, 6)$ and $\vec{r_1} = (4, 0)$.

- 1. Compute the difference $\vec{v} = \vec{r_1} \vec{r_0}$.
- 2. Write the parametric (i.e., explicit) equation $\vec{r}(t) = \vec{r_0} + t\vec{v}$ of the line through the points $\vec{r_0}$ and $\vec{r_1}$.
- 3. Find a vector \vec{n} perpendicular to \vec{v} .
- 4. Write the implicit equation $\vec{n} \cdot \vec{r} + c = 0$ of the line through $\vec{r_0}$ and $\vec{r_1}$. (Hint: Simplify the equation by removing common factors if possible.)
- 5. Find the distance from $\vec{p_0} = (9, 5)$ to this line.

1.
$$\overrightarrow{V} = (4,0) - (1,6) = \overline{(3,-6)}$$

2.
$$\vec{r}(t) = (1,6) + t/3, -6) = 1 (1+3t, 6-6t)$$

If you forget the "trick", try this: let $\vec{n} = (a, b)$ and solve for a and b. We want $\vec{n} \cdot \vec{v} = 0$

Thus
$$a=2$$
 if we choose $b=1$. So $\vec{n}=(z,1)$ works. Note that $(6,3)$ is just 3 times this.

4.
$$(2,1) \cdot \vec{r} + c = 0$$
 should be true at $\vec{r} = \vec{r_0} = (1,6)$ so $(2,1) \cdot (1,6) + c = 0$, or $z + 6 + c = 0$, so $c = -8$.

5.
$$\frac{(2,1)\cdot (9,5)-8}{|(2,1)|} = \frac{18+5-8}{\sqrt{5}} = \frac{15}{\sqrt{5}} = \boxed{3\sqrt{5}}$$
 (or $\sqrt{45}$)

- 6. Write the parametric (i.e., explicit) equation $\vec{p}(t) = \vec{p_0} + t\vec{n}$ of the line through $\vec{p_0}$ in the direction of \vec{n} .
- 7. Find the intersection $\vec{p_1}$ of the two lines. (Hint: it is probably simplest to use the equations from problems (6) and (4) rather than those from (6) and (2).)
- 8. Compare the distance between $\vec{p_0}$ and $\vec{p_1}$ to your answer to problem (5).
- 9. Sketch the results in one drawing.

6.
$$\vec{p}(t) = (9,5) + t(2,1) = (9+2t,5+t)$$

or $(9,5) + t(6,3) = (9+6t,5+3t)$

7.
$$\vec{p}(t)$$
 solves $(z,1) \cdot \vec{p} - 8 = 0$ if $(z,1) \cdot (9+zt,5+t) - 8 = 0$
1.e. $18+4t+5+t-8=0$
or $15+5t=0$. Then $t=-15/5=-3$.
So $\vec{p}(-3) = (9-6,5-3) = (3,2) = \vec{p}$.

8.
$$\overrightarrow{P_1} - \overrightarrow{P_0} = (9,5) - 3(2,1) - (9,5) = -3(2,1)$$

so the distance is $3|(2,1)| = 3\sqrt{5}$, agreeing with (5).

