R. Bruner Math 2030, Winter 2005, Test 3 April 8, 2005

- 1. Draw the diagram which shows the relation between (x, y) and (r, θ) . Write the formulas for x and y in terms of r and θ , for dA = dx dy in terms of r and θ , and for dV = dx dy dz in terms of r, θ and z.
- 2. Draw the diagram which shows the relation between (r, z) and (ρ, ϕ) . Write the formulas for r and z in terms of ρ and ϕ , for dA = dr dz in terms of ρ and ϕ , and for dV = dx dy dz in terms of ρ , ϕ , and θ .
- 3. Suppose that $1 \leq f(x, y) \leq 1 + y^2$ for all (x, y). What can you say about $\iint_R f \, dA$ if R is the rectangle $[0, 2] \times [0, 3]$?
- 4. Find the area and centroid of the region below $y = 1 x^2$ in the first quadrant.
- 5. Let R be the part of the disk $x^2 + y^2 \leq 1$ which lies between $\theta = \pi/6$ and $\theta = \pi/4$. Find \bar{x} , the x-coordinate of the centroid of R.
- 6. Let $(x, y) = F(u, v) = (u^3 v, v^3 u).$
 - (a) Find the Jacobian of F,

$$\frac{\partial(x,y)}{\partial(u,v)}$$

- (b) If R is the rectangle $[0, 1] \times [0, 1]$ in the uv-plane, find the area of its image, F(R).
- 7. Let R be the part of the cylinder $0 \le r \le 1$ which lies between the xy-plane and the paraboloid $z = 1 + r^2$. Find the volume of R.
- 8. Let R be the same region as in the preceding problem. Find the moment of inertia of R about the z-axis.
- 9. Let B be the part of the ball $0 \le \rho \le 1$ which lies inside the cone $0 \le \phi \le \pi/4$. Find the volume of B.
- 10. Let B be the same region as in the preceding problem. Find the centroid of B. (Hint: by symmetry, $\bar{x} = 0 = \bar{y}$.)