R. Bruner Math 2030, Winter 2005, Final Exam April 27, 2005

Each problem is worth 10 points unless otherwise indicated.

- 1. (5) Draw the diagram which shows the relation between (x, y) and (r, θ) . Write the formulas for x and y in terms of r and θ , for dA = dx dy in terms of r and θ , and for dV = dx dy dz in terms of r, θ and z.
- 2. (5) Draw the diagram which shows the relation between (r, z) and (ρ, ϕ) . Write the formulas for r and z in terms of ρ and ϕ , for dA = dr dz in terms of ρ and ϕ , and for dV = dx dy dz in terms of ρ , ϕ , and θ .
- 3. Decompose (1, 2, 3) as the sum of a vector parallel to (2, 2, 1) and a vector perpendicular to (2, 2, 1).
- 4. Find the point of 2x y z = 18 closest to the point (1, 1, 1).
- 5. (20) Let $\overrightarrow{r}(t) = (t^2, t^3 t)$.
 - (a) Find the velocity $\overrightarrow{v} = \overrightarrow{r'}$.
 - (b) Find the speed at time t = 1.
 - (c) Find the tangent line to $\overrightarrow{r}(t)$ at t = 1.
 - (d) Find the acceleration $\overrightarrow{a} = \overrightarrow{r}''$.
 - (e) Decompose $\overrightarrow{a}(1)$ into tangential and normal components.
 - (f) Compute the curvature κ at that point.
- 6. Find all first and second partial derivatives of $\sin(xe^y)$.
- 7. Find the tangent plane to the surface $z = x^2y + y^2$ at the point (x, y) = (1, 2).
- 8. In which direction does $f(x, y, z) = x^2y + y^2z$ increase most rapidly, at the point (x, y, z) = (1, 2, 3)? What is the tangent plane to the level surface of f at this point?
- 9. Compute $\partial z/\partial x$ and $\partial z/\partial y$ if $e^x + e^y + e^z = 1$.
- 10. Is the function f(x, y) defined below continuous?

$$f(x,y) = \begin{cases} \frac{1 - \sqrt{x+y}}{x+y-1} & x+y \neq 1\\ 1 & x+y = 1 \end{cases}$$

- 11. (20) Let L_1 be the line $L_1(t) = (2,0,0) + t(-2,1,0)$ and let L_2 be the line $L_2(s) = (0,2,0) + s(0,1,1)$ in \mathbb{R}^3 . Find the minimum distance between them, and the points on them closest to one another by:
 - (a) using vector methods.
 - (b) minimizing an appropriate function of two variables.

(*Hint:* If you do not get the same answer by these two methods, it is probably best to finish the rest of the test before trying to find your error.)

- 12. Let B be the region inside the sphere $\rho = 4$ and outside the cylinder r = 1. Compute the volume of B.
- 13. Let R be the region below $y = 4 x^2$ in the first quadrant. Find the moment of inertia of R about the y-axis.
- 14. Find and classify the critical points of $f(x, y) = x^2y + y^2 + x^2 + y$.
- 15. Find the absolute maximum and minimum value of xy x on the region above $y = x^2$ and below y = 4.
- 16. Compute $\int_C x^2 y \, dy$ where C is the parabola $y = x^2, 0 \le x \le 3$.
- 17. Compute $\int_C \nabla f \cdot d\vec{r}$ where $f(x,y) = 2x y^2$ and C is a curve which starts at (2,1) and ends at (1,5).
- 18. Let C_1 and C_2 be circles of radius 1 centered at (1,0) and (-1,0) respectively. Let C_3 be the circle of radius 10 centered at the origin and let R be the region inside C_3 and outside both C_1 and C_2 . If $Q_x P_y = 1$ in R, $\int_{C_1} P \, dx + Q \, dy = 8\pi$, and $\int_{C_2} P \, dx + Q \, dy = 10\pi$, what is $\int_{C_3} P \, dx + Q \, dy$?
- 19. Let \mathcal{S} be the part of the surface z = 2x + 5y + 7 which lies above the rectangle $-1 \le x \le 2, 0 \le y \le 2$. Find the surface area of \mathcal{S} and the surface integral $\iint_{\mathcal{S}} z \overrightarrow{k} \cdot d \overrightarrow{S}$.