R. Bruner Math 2030, Winter 2004, Test 3 April 7, 2004

- 1. Draw the diagram which shows the relation between (x, y) and (r, θ) . Write the formulas for x and y in terms of r and θ , and for dA = dx dy in terms of r and θ .
- 2. Draw the diagram which shows the relation between (r, z) and (ρ, ϕ) . Write the formulas for r and z in terms of ρ and ϕ , and for dA = dr dz in terms of ρ and ϕ .
- 3. Suppose that $x \leq f(x, y) \leq x + y$ for all (x, y). What can you say about $\iint_R f \, dA$ if R is the rectangle $[0, 2] \times [0, 3]$?
- 4. Find the area and centroid of the triangle with edges y = x, x = 2y, and y = 2.
- 5. Let R be the eighth of the disk $x^2 + y^2 \leq 1$ which lies above the x-axis and below the line y = x. The area of R is thus $\pi/8$. Find \bar{x} , the x-coordinate of the centroid of R.
- 6. Let $(x, y) = F(u, v) = (u + v^2, v u^2)$.
 - (a) Find the Jacobian of F,

$$rac{\partial(x,y)}{\partial(u,v)}$$

- (b) If R is the rectangle $[0,1] \times [0,1]$ in the uv-plane, find the area of its image, F(R).
- 7. Let R be the wedge shaped slice of the cylinder $0 \le r \le 1$ which lies between the planes z = 0 and z = 1 x. Find the volume of R.
- 8. Let R be the region inside the hyperboloid $r^2 = 1 + z^2$, between the planes z = 1 and z = -1. Find the moment of inertia of R about the z-axis.
- 9. Find the volume inside $\rho = \cos(\phi), \ 0 \le \phi \le \pi/2$.
- 10. Let B be the eighth of a solid ball which lies in the first octant (so that $0 \le \theta \le \pi/2$, and $0 \le \phi \le \pi/2$). The volume of B is thus $(\frac{4\pi}{3})/8 = \pi/6$. Find \bar{z} , the z-coordinate of the centroid of B.

—— The End ———