R. Bruner Math 2030, Winter 2004, Final Exam April 30, 2004

- 1. (5) Draw the diagram which shows the relation between (x, y) and (r, θ) . Write the formulas for x and y in terms of r and θ , and for dA = dx dy in terms of r and θ .
- 2. (5) Draw the diagram which shows the relation between (r, z) and (ρ, ϕ) . Write the formulas for r and z in terms of ρ and ϕ , and for dA = dr dz in terms of ρ and ϕ .
- 3. (5) The mapping (x, y) = F(u, v) is very complicated, but its Jacobian is always between 3/4 and 1. If R is a 3 by 4 rectangle, what can you say about the area of F(R)?
- 4. (5) Is (x, x^2, z) a conservative vector field? Why or why not?
- 5. (10) Compute $\int_C \nabla f \cdot d\vec{r}$ where $f(x, y) = x + y^2$ and C is the curve which follows a straight line from (2,0) to (1,1), then the parabola $y = x^2$ to (2,4), and finally, a straight line from (2,4) to (1,3).
- 6. Let $C(t) = (t^2 t, t t^3)$ for $0 \le t \le 1$.
 - (a) (10) Compute $\int_C x dy$.
 - (b) (10) Use Green's Theorem to rewrite $\int_C x dy$ as an integral over the region R inside the loop which C forms in the second quadrant.
 - (c) (5) What is the area of R?
- 7. (10) Decompose (4, 2, 5) as the sum of a vector parallel to (1, 2, 2) and a vector perpendicular to (1, 2, 2).
- 8. (10) Find the point of x + 4y + 9z = 14 closest to the origin.
- 9. (5 ea.) Let $\vec{r}(t) = (t^2 t, t^2 + t, t^3 t)$.
 - (a) Find the velocity $\vec{v} = \vec{r}'$.
 - (b) Find the acceleration $\vec{a} = \vec{r}''$.
 - (c) Find the speed at time t = 0.
 - (d) Find the normal and tangential components of acceleration at time t = 0.
 - (e) Find the cosine of the angle between the curve and the x-axis at time t = 0.
- 10. (10) Identify and sketch the surface $x^2 + y^2 = z^2 1$.
- 11. (20) Find and classify the critical points of $f(x,y) = (y^2 x^2)(y-1) = y^3 y^2 x^2y + x^2$.
- 12. (20) Find the absolute maximum and minimum of $f(x, y) = x^2 + 2y^2 x y$ on the square $0 \le x \le 1, 0 \le y \le 1$.

- 13. Let V be the solid region which lies above the disk $x^2 + y^2 \leq 1$ in the xy-plane and below $z = \sqrt{x^2 + y^2 + 1} = \sqrt{r^2 + 1}$.
 - (a) (10) Find the volume of V.
 - (b) (10) Suppose $\vec{F} = z\vec{k} = (0, 0, z)$. Compute $\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} \, dS$, where \mathcal{S} is the boundary surface of V. (Hint: $\vec{F} \cdot \vec{n} = 0$ on the base z = 0 of V, and also on the vertical sides of V, so the only nonzero part of this integral occurs on the top surface $z = \sqrt{r^2 + 1}$.
- 14. (10) Let

$$f(x,y) = \begin{cases} \frac{x+2y}{x^2-y^2} & \text{if } x^2 \neq y^2\\ 0 & \text{if } x^2 = y^2 \end{cases}$$

Is f continuous at (0,0)? Why or why not?

- 15. Let $z = x^2 3xy$.
 - (a) (10) Find an equation for the tangent plane at (x, y) = (1, 1).
 - (b) (5) In what direction is z increasing most rapidly at (x, y) = (1, 1).
 - (c) (5) How fast is z increasing in the direction $(\frac{1}{2}, \frac{\sqrt{3}}{2})$ at (x, y) = (1, 1).
 - (d) (10) Find an equation for the tangent line to the level curve of $x^2 3xy$ which passes through (x, y) = (1, 1).
 - (e) (10) If the coordinate transformation (x, y) = F(u, v) has

$$\frac{\partial x}{\partial u} = 1, \quad \frac{\partial x}{\partial v} = 2, \quad \frac{\partial y}{\partial u} = 3, \quad \frac{\partial y}{\partial v} = 4$$

express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as functions of x and y.

- 16. Let R be the region $0 \le x \le 2, 0 \le y \le x^2$.
 - (a) (5) Find the area of R.
 - (b) (10) Find the centroid of R.
 - (c) (5) Find the integral of $\sqrt{6y 2y^{3/2}}$ over R.