R. Bruner Math 2030, Winter 2016, Final Exam April 27, 2016

Each problem is worth 10 points unless otherwise indicated.

- 1. Draw the diagram which shows the relation between (x, y) and (r, θ) .
 - (a) Write the formula for x and y in terms of r and θ .
 - (b) Write the formula for dx dy in terms of r, θ , dr, and $d\theta$.
 - (c) Write the formula for dx dy dz in terms of r, θ , z, dr, $d\theta$ and dz.
- 2. Draw the diagram which shows the relation between (r, z) and (ρ, ϕ) .
 - (a) Write the formula for r and z in terms of ρ and ϕ .
 - (b) Write the formula for dr dz in terms of ρ , ϕ , $d\rho$, and $d\phi$.
 - (c) Write the formula for dx dy dz in terms of ρ , ϕ , θ , $d\rho$, $d\phi$, and $d\theta$.
- 3. Decompose (1, -11, 1) as the sum of a vector parallel to (1, 3, -1) and a vector perpendicular to (1, 3, -1).
- 4. Find the point of x + 3y 2z = -9 closest to the point (7, 18, -7).
- 5. Find a parametric equation for the line of intersection of the planes x + y z = 0 and 2x y z = 1.
- 6. (20) Let $\mathbf{r}(t) = (t^3 t, t^2 1)$.
 - (a) Find the velocity $\mathbf{v} = \mathbf{r}'$.
 - (b) Find the speed at time t = 1.
 - (c) Find the tangent line to $\mathbf{r}(t)$ at t = 1.
 - (d) Find the acceleration $\mathbf{a} = \mathbf{r}''$.
 - (e) Decompose $\mathbf{a}(1)$ into tangential and normal components.
 - (f) Compute the curvature κ at that point.
- 7. Find all first and second partial derivatives of $x^3 \sin(y^2 + 1)$.
- 8. Find the tangent plane to the surface $z = x^3 xy^2$ at the point (x, y) = (1, 2).

- 9. (15) Let $f(x, y, z) = x^3 + xyz + z^3$.
 - (a) In which direction does f increase most rapidly at the point (x, y, z) = (1, 2, 3)?
 - (b) What is the tangent plane to the level surface of f at (1, 2, 3)?
 - (c) Compute $\partial z/\partial x$ and $\partial z/\partial y$ if z is determined by this level surface, i.e., by the condition $x^3 + xyz + z^3 = 34$.
- 10. (15) Let R be the region between $y = 3x x^2$ and the x-axis. Find the area and centroid of R.
- 11. Find and classify the critical points of $f(x, y) = x^3 + xy^2 3x$.
- 12. Find the absolute maximum and minimum value of $x^2 xy$ on the region below y = 3and above $y = x^2 - 1$.
- 13. (15) Let B be the region given by $0 \le z \le r^2 r^3$ and $0 \le r \le 1$ in cylindrical coordinates.
 - (a) Find the volume of B.
 - (b) Find the centroid of B. (Hint: you may use symmetry to note that the x and y coordinates are obvious, but don't forget to say what they are.)
- 14. Compute $\int_C x \, dy y \, dx$ where C is the parabola $y = x^2, 0 \le x \le 3$.
- 15. Compute $\int_C \nabla f \cdot d\vec{r}$ where f(x, y) = xy and C is a curve which starts at (2, 1) and ends at (1, 5).
- 16. Let R be the rectangle $0 \le x \le 3$, $0 \le y \le 2$. If $Q_x P_y = 5$, evaluate $\int_{\partial R} P \, dx + Q \, dy$.
- 17. (15) Let S be the part of the surface z = x + y + 1 which lies inside the cylinder $x^2 + y^2 = 4$. Let $\mathbf{F}(x, y, z) = (x, x, 0)$.
 - (a) Find the surface area of \mathcal{S} .
 - (b) Compute $\iint_{\mathcal{S}} \nabla \times \mathbf{F} \cdot d\mathbf{S}$.
 - (c) Compute $\int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$.