R. Bruner Math 2030, Winter 2017, Test 3 17 November 2017

- 1. Polar and cylindrical coordinates: Draw the diagram which shows the relation between (x, y) and (r, θ) . Write the formulas for
 - (a) x and y in terms of r and θ ,
 - (b) for $dA = dx \, dy$ in terms of r, θ, dr and $d\theta$,
 - (c) for $dV = dx \, dy \, dz$ in terms of $r, \theta, z, dr, d\theta$ and dz.
- 2. Spherical coordinates: Draw the diagram which shows the relation between (r, z) and (ρ, ϕ) . Write the formulas for
 - (a) r and z in terms of ρ and ϕ ,
 - (b) for dA = dr dz in terms of ρ , ϕ , $d\rho$ and $d\phi$,
 - (c) for $dV = dx \, dy \, dz$ in terms of ρ , θ , ϕ , $d\rho$, $d\theta$ and $d\phi$.
- 3. Find the volume of the region below z = 2x + 4y and above the triangle in the xy-plane bounded by the positive x-axis, the positive y-axis, and the line 2x + y = 4.
- 4. Let C be the cone whose base lies in the xy-plane and whose top surface is given by z = 4 r in cylindrical coordinates. Find the volume of C.
- 5. Let S be the 'slice' of the sphere $\rho = 1$ which lies between the xy-plane and the angle $\phi = \pi/4$. Find the volume of S.
- 6. Let $(x, y) = (u + v^2, v u^2)$ be a transformation from the *uv*-plane to the *xy*-plane.
 - (a) Find the Jacobian $\partial(x, y)/\partial(u, v)$.
 - (b) Compute the area of the region in the xy-plane which is the image under this transformation of the unit square $[0, 1] \times [0, 1]$ in the uv-plane.
- 7. Convert from spherical to cylindrical and then to rectangular, coordinates:
 - (a) $\rho = 2$
 - (b) $\phi = \pi/4$
- 8. Convert from cylindrical to rectangular coordinates:
 - (a) r = 3
 - (b) $\theta = \pi/4$
- 9. (Extra credit) Describe the region in the xy-plane whose area you calculated in problem 6.

_____ The End _____