Name:

Math 2030, Winter 2017, Quiz 14 11 December 2017 R. Bruner

No calculators needed or allowed.

Let \mathcal{V} be the cylindrical solid given by $0 \leq z \leq 4$ and $0 \leq r \leq 2$ in cylindrical coordinates. Observe that the boundary surface of \mathcal{V} has three parts: a top disk \mathcal{T}_1 , a bottom disk \mathcal{T}_0 , and the lateral side surface \mathcal{S} given by $r = 2, 0 \leq z \leq 4$.

Let F(x, y, z) = (x, y, 0).

1. Show that $\mathbf{F} \cdot \mathbf{n} = 0$ on \mathcal{T}_0 and \mathcal{T}_1 , so that

$$\iint_{\partial \mathcal{V}} \mathbf{F} \cdot \mathbf{n} \, d\mathbf{S} = \iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \, d\mathbf{S}$$

- 2. On a surface of revolution r = f(z), we have $\mathbf{n} \, dS = (x, y, -f(z)f'(z)) \, dz d\theta$. Use this to compute $\mathbf{n} \, dS$ for the lateral surface \mathcal{S} .
- 3. Compute $\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} \, dS$.
- 4. Compute $\nabla \cdot \mathbf{F}$.
- 5. Compute $\iiint_{\mathcal{V}} \nabla \cdot \mathbf{F} \, dV.$