R. Bruner Math 2030, Fall 2017, Final Exam 18 December 2017

Each problem is worth 10 points unless otherwise indicated.

- 1. (10) Find and classify the critical points of $f(x, y) = 4x^3 2x^2y + y^2 + 8y$.
- 2. Consider the ellipse $4x^2 + y^2 = 4$.
 - (a) (10) Find the absolute maximum and minimum value of x + 2y on the ellipse.
 - (b) (5) Find the tangent line to the ellipse at the point where the maximum value of x + 2y occurs.
- 3. (15) Let C be the closed curve $(x, y) = (1 t^2, t^3 t), -1 \le t \le 1$.
 - (a) Compute $\int_C x \, dy$.
 - (b) Compute $\int_C y \, dx$.
 - (c) What is the area inside C? Why?
- 4. (24) Let $\mathbf{r}(t) = (t^2 + 4t, t^3 8t)$.
 - (a) Find the velocity $\mathbf{v} = \mathbf{r}'$.
 - (b) Find the speed at time t = 2.
 - (c) Find the tangent line to $\mathbf{r}(t)$ at t = 2.
 - (d) Find the acceleration $\mathbf{a} = \mathbf{r}''$.
 - (e) Decompose $\mathbf{a}(2)$ into tangential and normal components.
 - (f) Compute the curvature κ at that point.
- 5. (10) Find all first and second partial derivatives of $e^x \cos(2y)$.
- 6. (10) Find the tangent plane to the surface $z = x^2y + xy^3$ at the point (x, y) = (1, 2).
- 7. (15) Let $f(x, y, z) = xyz + x^2 + y^2 + z^2$.
 - (a) In which direction does f increase most rapidly at the point (x, y, z) = (3, 2, 1)?
 - (b) What is the tangent plane to the level surface of f at (3, 2, 1)?
 - (c) Compute $\partial z/\partial x$ and $\partial z/\partial y$ if z(x, y) is determined by the level surfaces of f.
- 8. (10) Decompose (4,3,4) as the sum of a vector parallel to (1,2,2) and a vector perpendicular to (1,2,2).

— Over ——

- 9. (10) Determine whether the following vector fields are conservative or not. Find a potential function for each conservative field.
 - (a) $\vec{F}(x, y, z) = (y, x, z)$
 - (b) $\vec{F}(x, y, z) = (y, z, x)$
- 10. (10) Compute $\int_C \nabla f \cdot d\vec{r}$, i.e. $\int_C \nabla f \cdot \vec{T} ds$, where $f(x,y) = x^2 y$ and C is a curve which starts at (2,3) and ends at (1,2).
- 11. (10) Let B be the region given by $0 \le r \le z z^3$ and $0 \le z \le 1$ in cylindrical coordinates. Find the volume of B.

Recall that if a surface S is given by r = f(z) in cylindrical coordinates, then

$$d\vec{S} = \vec{n}dS = (x, y, -f(z)f'(z)) \ dz \ d\theta,$$

where x and y are expressed as usual in cylindrical coordinates using r = f(z).

- 12. (15) Let S be the surface r = 1 z for $0 \le z \le 1$. Consider the vector field $\vec{F}(x, y, z) = (x, y, 0)$.
 - (a) Compute $\iint_{\mathcal{S}} \vec{F} \cdot \vec{n} \, dS$.
 - (b) Let \mathcal{V} be the solid cone bounded by \mathcal{S} and the *xy*-plane. Show that $\vec{F} \cdot \vec{n} = 0$ when \vec{n} is a normal vector to that part of $\partial \mathcal{V}$ which lies in the *xy*-plane.
 - (c) Compute $\iiint_{\mathcal{V}} \nabla \cdot \vec{F} \, dV$.
- 13. (10) Let R be a disk of radius 2. If $Q_x P_y = 3$, evaluate $\int_{\partial B} P \, dx + Q \, dy$.
- 14. (15) Let S be the part of the surface z = 2x + 4y + 1 which lies inside the cylinder $x^2 + y^2 = 1$. Let $\mathbf{F}(x, y, z) = (y, y, 0)$.
 - (a) Find the surface area of \mathcal{S} .
 - (b) Compute $\iint_{\mathcal{S}} \nabla \times \mathbf{F} \cdot d\mathbf{S}$.
 - (c) Compute $\int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$. (Hint: You may use Stokes' Theorem.)