Some sample problems for Test 3 Math 2020, Winter 2007 R. Bruner,

- 1. (10) Find the average value of x^2 on [0, 2].
- 2. (10) Estimate $\int_{1}^{3} \frac{dx}{x}$ using three equal intervals and evaluating the function at the midpoint of each interval.
- 3. (10) Let R be the region between y = 1 and $y = 2 x^2$. (Hint: they intersect at x = -1 and x = 1.) Find the volume of the solid obtained by revolving R about the x-axis.
- 4. Find the centroid and area of the region in the preceding problem.
- 5. (25) Compute

(a)
$$\int \frac{dx}{x^2 - x - 2}$$

(b)
$$\int \frac{x^2 + 2x}{x^2 + 4} dx$$

(c)
$$\int x \sin x dx$$

(d)
$$\int \sin^{10} (x) \cos (x) dx$$

(e)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$

- 6. (10) Suppose that $f(\theta)$ increases from 1 to 2 as θ goes from 0 to $\pi/2$,
 - decreases to 0 as θ goes from $\pi/2$ to π ,
 - increases to 2 as θ goes from π to $3\pi/2$, and
 - decreases to 1 as θ goes from $3\pi/2$ to 2π .

Sketch the curve $r = f(\theta)$.

- 7. Consider the curve $x(t) = t^3 3t$, $y(t) = t^4 3t^2$.
 - (a) (10) Compute dx/dt and dy/dt.
 - (b) (5) Find both places where the curve is vertical.
 - (c) (5) Find all three places where the curve is horizontal.
 - (d) (10) Find the tangent line at $t = 1/\sqrt{3}$.
 - (e) (5) Write the integral which computes the length of the curve from t = 0 to $t = 1/\sqrt{3}$. (You do not need to evaluate it.)
- 8. (10) Find the area inside the curve which is given in polar coordinates as $r = \sqrt{\cos 2\theta}$, $-\pi/4 \le \theta \le \pi/4$.
- 9. (5) Convert to polar coordinates $(x^2 + y^2)^2 = x^2 y^2$.
- 10. (5) Convert to Cartesian coordinates $r \cos(\theta) = r^2 \sin^2(\theta)$.

— The End — — —