Final Exam, Math 2020 25 April 2007 R. Bruner

Write clearly, label your answers, and leave space between problems. I strongly suggest that you read all the problems before starting work.

- 1. (5) Compute $\frac{d}{dx} \int_{x^2}^{x^3} \sqrt{\sin(t)} dt$ Sol: $\sqrt{\sin(x^3)} \cdot 3x^2 - \sqrt{\sin(x^2)} \cdot 2x$ 2. (5) Compute $\frac{d}{dx} \int \sqrt{\sin(x)} dx$ Sol: $\sqrt{\sin(x)}$
- 3. (10) Find the average value of $\cos(x)$ on the interval $[0, \pi/2]$.

Sol:

$$\frac{1}{\pi/2} \int_0^{\pi/2} \cos(x) \, dx = \frac{2}{\pi} (\sin(\pi/2) - \sin(0)) = 2/\pi$$

4. (10) Find the area of the region below $y = 3x - x^2$ and above y = x.

Sol: $x < 3x - x^2$ when $x^2 - 3x + x < 0$, i.e., $x^2 - 2x < 0$. Since $x^2 - 2x = x(x - 2)$, this is $0 \le x \le 2$. The area is therefore

$$\int_0^2 2x - x^2 \, dx = \left(x^2 - \frac{x^3}{3}\right)\Big|_0^2 = 4 - \frac{8}{3} = \frac{4}{3}$$

5. (10) The region in problem (4) is revolved about the x-axis. Find the volume of the resulting solid.

Sol:

$$\pi \int_0^2 r_{\text{outer}}^2 - r_{\text{inner}}^2 \, dx = \pi \int_0^2 (3x - x^2)^2 - x^2 \, dx = \pi \int_0^2 9x^2 - 6x^3 + x^4 - x^2 \, dx = \pi \left(\frac{8}{3}x^3 - \frac{6}{4}x^4 + \frac{1}{5}x^5\right)\Big|_0^2 = \pi \left(\frac{64}{3} - 24 + \frac{32}{5}\right) = \frac{56}{15}$$

6. (10) Compute $\int 2xe^{3x} dx$

Sol: Use parts with u = 2x and $dv = e^{3x} dx$ or use undetermined coefficients:

$$\frac{d}{dx}(ax+b)e^{3x} = ae^{3x} + 3(ax+b)e^{3x} = (3ax+(a+3b))e^{3x}$$

so a + 3b = 0 and 3a = 2. Thus a = (2/3) and b = -2/9. Hence

$$\int 2xe^{3x} \, dx = \left(\frac{2}{3}x - \frac{2}{9}\right)e^{3x} + C.$$

7. (10) Compute $\int (x+1)(x+4)^{99} dx$

Sol: Let u = x + 4. Then x = u - 4 and dx = du so

$$\int (x+1)(x+4)^{99} dx = \int (u-3)u^{99} du = \int u^{100} - 3u^{99} du$$
$$= \frac{1}{101}u^{101} - \frac{3}{100}u^{100} + C = \frac{1}{101}(x+4)^{101} - \frac{3}{100}(x+4)^{100} + C$$

8. (10) Compute $\int x^3 \ln x \, dx$

Sol: Use integration by parts with $u = \ln x$ and $dv = x^3 dx$. Then du = (1/x) dx and $v = x^4/4$ gives

$$\int x^3 \ln x \, dx = uv - \int v \, du = \frac{x^4 \ln x}{4} - \int \frac{x^3}{4} \, dx = \frac{x^4 \ln x}{4} - \frac{x^4}{16} + C$$

9. (10) Compute $\int \frac{1}{(x+1)(x+4)} dx$

Sol: The partial fraction decomposition

$$\frac{1}{(x+1)(x+4)} = \frac{A}{x+1} + \frac{B}{x+4}$$

requires that 1 = A(x+4) + B(x+1). Therefore A + B = 0 and 4A + B = 1. Hence B = -A, so 3A = 1 and A = 1/3, B = -1/3. Therefore

$$\int \frac{1}{(x+1)(x+4)} dx = \frac{1}{3} \int \frac{1}{x+1} - \frac{1}{x+4} dx = \frac{1}{3} \left(\ln(x+1) - \ln(x+4) \right) + C$$
$$= \frac{1}{3} \ln\left(\frac{x+1}{x+4}\right) + C = \frac{1}{3} \ln(1 - \frac{3}{x+4}) + C$$

10. (10) Compute
$$\int \frac{1}{\sqrt{4-9x^2}} dx$$

Sol:

$$\int \frac{1}{\sqrt{4-9x^2}} \, dx = \frac{1}{2} \int \frac{1}{\sqrt{1-9x^2/4}} \, dx$$

Let u = (3/2)x, so that dx = (2/3)du and $1 - 9x^2/4 = 1 - u^2$. Then the integral becomes

$$\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\int \frac{1}{\sqrt{1-u^2}}\,du = \frac{1}{3}\sin^{-1}(u) + C = \frac{1}{3}\sin^{-1}(3x/2) + C$$

11. (10) Compute $\int \frac{x}{\sqrt{4-9x^2}} dx$

Sol: Let $u = 4 - 9x^2$, so that $du = -18x \, dx$, and hence, $x \, dx = -(1/18) \, du$. Then

$$\int \frac{x}{\sqrt{4-9x^2}} \, dx = \frac{-1}{18} \int \frac{du}{\sqrt{u}} = \frac{-1}{18} \int u^{-1/2} \, du = \frac{-1}{18} (2u^{1/2}) + C = \frac{-1}{9} \sqrt{4-9x^2} + C$$

12. (10) Compute
$$\int_{1}^{\infty} \frac{1}{x^4} dx$$

Sol:

$$\int_{1}^{\infty} \frac{1}{x^4} dx = \lim_{A \to \infty} \int_{1}^{A} \frac{1}{x^4} dx = \lim_{A \to \infty} -\frac{1}{3} \frac{1}{x^3} \Big|_{1}^{A} = \lim_{A \to \infty} \left(\frac{1}{3} - \frac{1}{3A^3}\right) = \frac{1}{3}$$

13. (15) Estimate $\int_0^4 \frac{16}{x^2 + 16} dx$ using a Riemann sum with two equal subintervals and

- (a) left hand endpoints
- (b) right hand endpoints

What do these estimates tell you about π ?

Sol: (a): The left endpoint approximation uses $x_1^* = 0$ on [0, 2] and uses $x_2^* = 2$ on [2, 4]. This gives

$$\frac{16}{0^2 + 16}(2 - 0) + \frac{16}{2^2 + 16}(4 - 2) = 2 + \frac{4}{5}(2) = 3\frac{3}{5}.$$

(b): The right endpoint approximation uses $x_1^* = 2$ on [0, 2] and uses $x_2^* = 4$ on [2, 4]. This gives

$$\frac{16}{2^2 + 16}(2 - 0) + \frac{16}{4^2 + 16}(4 - 2) = \frac{4}{5}(2) + 1 = 2\frac{3}{5}.$$

Since the function is decreasing on [0, 4] and the integral equals π , we have

$$2\frac{3}{5} < \pi < 3\frac{3}{5}$$

14. Consider the curve $x(t) = t^3 + t$, $y(t) = t^4 - 2t^2$.

- (a) (10) Compute dx/dt and dy/dt.
- (b) (5) Compute dy/dx.
- (c) (5) Show that the curve is never vertical.
- (d) (5) Find all three places where the curve is horizontal.
- (e) (10) Compute the area between the curve $(x(t), y(t)), 0 \le t \le 1$, and the x-axis.
- (f) (5) Write the integral which computes the length of the curve from t = 0 to t = 1.

Sol: (a) $dx/dt = 3t^2 + 1$ and $dy/dt = 4t^3 - 4t$. (b) $dy/dx = (4t^3 - 4t)/(3t^2 + 1)$.

(c) The curve is vertical iff dx/dt = 0 but $3t^2 + 1 \ge 1 > 0$ for all t.

(d) The curve is horizontal iff dy/dt = 0, i.e. $4t^3 - 4t = 0$. Since $t^3 - t = t(t-1)(t+1)$ this happens when t = -1, 0, 1. These are the points (x, y) = (-2, -1), (0, 0) and (2, -1). (e)

$$\int_0^1 y \, dx = \int_0^1 (t^4 - 2t^2)(3t^2 + 1) \, dt = \int_0^1 3t^6 - 5t^4 - 2t^2 \, dt = \frac{3}{7} - 1 - \frac{2}{3} = -\frac{26}{21} + \frac{1}{21} +$$

The value of y(t) is negative throughout [0, 1], so this integral is the negtive of the area. Hence the area is 26/21.

$$\int_0^1 \sqrt{(3t^2+1)^2 + (4t^3-4t)^2} \, dt$$

- 15. (a) (5) Convert the polar curve $r^2 = \cos 2\theta$ to Cartesian coordinates. (Hint: $\cos(2\theta) = \cos^2(\theta) \sin^2(\theta)$.)
 - (b) (10) The part with $r \ge 0$ and $-\pi/4 \le \theta \le \pi/4$ forms a loop centered on the *x*-axis. Use the polar form to compute the area inside this loop.
 - Sol: (a) Multiplying by r^2 we find the curve is given by

$$r^4 = r^2 \cos(2\theta) = r^2 \cos^2\theta - r^2 \sin^2\theta.$$

In Cartesian coordinates this becomes

$$(x^2 + y^2)^2 = x^2 - y^2$$

(b)

$$\int_{-\pi/4}^{\pi/4} \frac{1}{2} r^2 \, d\theta = \int_{-\pi/4}^{\pi/4} \frac{1}{2} \cos 2\theta \, d\theta = \frac{1}{4} \sin 2\theta \Big|_{-\pi/4}^{\pi/4} = \frac{1}{4} - \left(-\frac{1}{4}\right) = \frac{1}{2}$$

16. (5) Convert xy = 1 to polar coordinates .

Sol:
$$r \cos(\theta) r \sin(\theta) = 1$$
 or $r^2 \sin(\theta) \cos(\theta)$
17. (10) Compute $\lim_{x \to 0} \frac{1 - \cos(x) - x \sin(x)}{e^x - 1 - x}$

Sol:

$$\frac{1 - \left(1 - \frac{x^2}{2} + \dots\right) - \left(x - \frac{x^3}{6} + \dots\right)}{\left(1 + x + \frac{x^2}{2} + \dots\right) - 1 - x} = \frac{-\frac{x^2}{2} + \text{higher}}{\frac{x^2}{2} + \text{higher}} \longrightarrow -1$$

18. (10) Find the Taylor series for $(e^x - 1)/x$.

Sol:

$$\frac{1}{x}\sum_{n=1}^{\infty}\frac{x^n}{n!} = \sum_{n=1}^{\infty}\frac{x^{n-1}}{n!} = \sum_{n=0}^{\infty}\frac{x^n}{(n+1)!}$$

19. (10) Use the Taylor series of $\cos(x)$ to show that the approximation $\cos(1/2) \simeq 1 - (1/8) = 7/8$ is accurate to two decimal places.

Sol: The Taylor series for $\cos x$ is an alternating series, so the error will be less than the first omitted term, which is $(1/2)^4/4! = 1/(16 * 24) < 1/100$.

20. (10) Find a power series for
$$\int e^{-x^3} dx$$

Sol:

$$\int e^{-x^3} dx = \int \sum_{0}^{\infty} \frac{(-x^3)^n}{n!} dx = \int \sum_{0}^{\infty} \frac{(-1)^n x^{3n}}{n!} dx = \sum_{0}^{\infty} (-1)^n \frac{x^{3n+1}}{n!(3n+1)}$$

- 21. (10 each) Determine whether the following series converge absolutely, converge conditionally, or diverge:
 - (a) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ Sol: converges conditionally: convergent alt series, but absolute values diverge by comparison test with divergent harmonic series.
 - (b) $\sum_{n=0}^{\infty} \frac{n+1}{2n+1}$ Sol: diverges by n^{th} term test
 - (c) $\sum_{n=0}^{\infty} (-1)^n \frac{n^2}{2^n}$ Sol: converges absolutely by ratio test:

$$\frac{(n+1)^2}{2^{n+1}}\frac{2^n}{n^2} = \left(\frac{n+1}{n}\right)^2 \cdot \frac{1}{2} \longrightarrow \frac{1}{2} < 1$$

22. (10) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{2^n x^n}{n^2}$

Sol: R = 1/2 by the ratio test:

$$\frac{2^{n+1}x^{n+1}}{(n+1)^2}\frac{n^2}{2^nx^n} = 2x\left(\frac{n}{n+1}\right)^2 \longrightarrow 2x < 1$$

iff x < 1/2.

23. (10) If
$$f(x) = \sum_{n=1}^{\infty} \frac{2^n x^n}{n^2}$$
, what is $f^{(n)}(0)$?

Sol:
$$\frac{f^{(n)}(0)}{n!} = \frac{2^n}{n^2}$$
 so $f^{(n)}(0) = \frac{2^n n!}{n^2}$

24. (5 each) Compute

(a)
$$\frac{2+i}{1+i}$$
 (b) \sqrt{i} (c) $|3-4i|$ (d) i^{103}