Calculation of Large Ext Modules

Robert R. Bruner

1 Introduction

Let A be a graded algebra of finite type over a finite field k, and let M be
an A-module of finite type which is bounded below. Our goal is to compute

H*t(A) = Ext¥(k,k) and H*(M) = Ext¥{(M,k)
for small s and ¢ by directly constructing free resolutions

0 « M + DD — Dl = Dg —
and
0 « k +« Co — Cl — Cg =

We shall let k,A,M,C, and D have these meanings throughout the
paper.

From the resolutions, we immediately obtain k£ bases for Ext. In addi-
tion, Lemma 3.2 shows that some product information is already visible in
the resolution. In §3 we show how to obtain complete product information
by computing chain maps D — C and C — C, and in §4 we show how to
determine Massey products by computing chain null homotopies.

In the programming, our main goal has been economy of space, since
memory has been the limiting factor in our experience. A second goal has
been to make it as easy as possible to use different algebras and modules.
The latter goal has been achieved by using a very small number of routines
to define the algebra and the module, so that a new algebra or module can
be used by simply redefining these few routines.

We will first describe the algorithms for doing the calculations outlined
above, then describe our implementations.

2 Cohomology

2.1 The Connected case

Assume first that A is connected (4y = k). Then modules have minimal
free resolutions, and an A basis for the minimal resolution of M is dual to
a k basis for H(M). To find the minimal resolution, apply the following
algorithm, stopping when you want to or have to.

Ezxt := 0;
For t = conn(M) to co begin
Oldker := Basis for M;;
For s = 0 to Maxfilt(¢) begin
Image := 0;
Newker := 0;
For g € Ext®
For op € Basis of A;_4.4(;) begin
z:i=op * g;
dz := Act(op, diff (g));
Reduce (z,dz) against Image;
If dz = 0 then append z to Newker
else insert (z,dz) into I'mage;
end {op and g};
For cyc € Oldker begin
Reduce cyc against Image;
If cyc # 0 then begin
add a generator g to Ezt®;

diff(g) = cyc;
deg(g) :=1; |
insert (g, cyc) into Image;
end {cyc};
Oldker := Newker;
end{s};
end{t}.

Several parts of this require some elaboration or definition.

. Ezt® is a list of generators in filtration s, for each s > 0. Tor would
probably be more appropriate, but the perfect duality between Tor
and Ezt here allow us to name it after the actual object of interest
to us.

. conn(M) = min{t|M; # 0}, the connectivity of M.
. diff(g) and deg(g) are the differential and degree of the generator g.
. Oldker and Newker are lists of elements which span the kernels.

. Image is an ordered list of pairs (z,dz) such that the dz’s form a
basis for the image of D*! in D*~ 1%,

. Maxfilt(¢) must be a nondecreasing function of ¢ for the results of the
algorithm to have any significance. Within this requirement, Maxfilt
may be adapted to the needs or knowledge of the user. Occasionally,
we will want only a presentation

D1—>D0—)’M‘—>0

in which case Maxfilt(t) = 1 is appropriate. If a complete resolution
is required and nothing is known about M or H(M), Maxfilt(t) =
t —conn(M) is appropriate. If we know that H*(M) = 0 for s > U(t)
then Maxfilt(¢) = U(t) is appropriate. Letting s go any higher than
this will merely verify the “vanishing line” U (t). In our original appli-
cation, A = the mod 2 Steenrod algebra and M = Z,, an interesting
variant of this occurs. We have H*(A4) = 0 for s > t/3, approxi-
mately, except for H*(A) which has 1 generator whose differential
is Sq* of the generator in H*"1~1(A). Rather than waste 2/3 of
our effort as we would using Maxfilt(t) = ¢, we “prime” the algo-
rithm with the generators in H* and let Maxfilt(t) = t/3 (approx-
imately). A similar procedure can be applied whenever D* can be
determined from prior values of D. Note that it is not sufficient to
know H*® in terms of prior H; we also need to know the differential
d: D** — D°'* since these differentials may well play a role in higher
internal degrees.

T

10.

11.

12.

Act(op,diff(g)) applies op to diff(¢g). If s = 0, diff(¢g) € M, so this
depends on M. If s > 0 then diff(g) € D, so this depends only on the
algebra A (since D is free).

“Reduce (z, dz) against Image” runs through I'mage in order, replac-
ing (z,dz) by (z — a,dz — da) for each pair (a,da) € Image such that
the highest term of da occurs in dz, until the highest term of dz is
distinct from the highest terms of all the entries in Image, or until
dx becomes 0.

“Reduce cyc against Image” runs through I'mage in order, replacing
cyc by cyc — da for each pair (a,da) € Image such that the highest
term of da occurs in cyc, until the highest term of cyc is distinct from
the highest terms of all the entries in Image, or until cyc becomes 0.

Append simply puts the new element at the end of N ewker, because
we have no need to order the bases for the kernels.

Insert inserts (z,dz) into Image so that the dz’s are in order, where
we order elements by their highest terms. Conceptually, this amounts
to keeping the matrix representation of the differential in upper tri-
angular (or row echelon) form with respect to the appropriate bases.

During the second phase (“For cyc € Oldker...”) we compute Ext*
by adding generators as necessary to make the cokernel

Image — Oldker — Coker — 0

equal 0. We do this by using Reduce to make each element of Oldker
independent of I'mage (or 0).

The parts of the algorithm which do not specify an order in which
to process elements do not depend on the order for their correctness.
However, careful attention to the order can have significant effects
on the speed with which Reduce operates. Basically, we want to
produce (op, gen) pairs in an order that will cause the highest terms
of op # diff(gen) to appear in reverse order. This means that new
terms will tend to go at the beginning of Image, so that Reduce will
have to do as few comparisons and subtractions as possible.

2.2 The nonconnected case

Here we do not have free resolutions that are minimal in the sense that the
differentials become 0 when — ®4 k or Hom4(—, k) are applied. A simple
example is provided by A = Z;[Z;] concentrated in degree 0. We have
H*(A) = 0 for s > 0, but there are no free resolutions of Z; over Z,[Zs] of
finite length. This is obvious if one observes that

dimgz, Ker(d,) = (=1)° (mod 3)

(since dimgz, A = 3) so that Ker(d,) can never be 0.

However, with slight modifications, the algorithm above will produce
free resolutions even when A is not connected. The modifications are in
the second phase, which should be replaced by

For cyc € Oldker begin
Reduce cyc against Image;
If cyc # 0 then begin
add a generator g to Ezt*;
diff (g) = eye;
deg(g) = t;
insert (g, cyc) into Image;
For op € Basis of 4, begin
Ti=o0p * g;
dz := Act(op, cyc);
Reduce (z,dz) against Image;
If dz = 0 then append z to Newker
else insert (z,dz) into Image;
end {op };
end {if};
end {cyc};

This algorithm is correct, in the sense that it terminates. However, the
size of the resolution it produces is sensitive to the order'in which the basis
for Oldker is processed. Any efficient algorithm for producing a minimal
(or at least small”) generating set over A for an A-submodule of a free
A-module, given a k-basis for it, would be very useful here. I would be

happy to know one even in the case A = Z,[%,,| for n=5 or 6. One obvious
first step in this direction would be to order the k generators of Oldker
by the dimension of the A¢-submodule of the quotient Oldker/Image that
they generate and hit one of maximal dimension first. This will alter the
dimensions for the remaining elements however, so could be a very slow
process.

In the nonconnected case, the free resolution requires further processing
in order to produce Exzt. Of course, we will actually compute Tor and
use duality to compute Ext. To compute Tor, we replace each diff(g) =
2 op; * g; by Y €(op;) * g;, where € : A — k is the augmentation. We then
recompute Image and Newker and the cokernel

Image — Oldker — Tor — 0

just as before. This second homology computation is very fast compared to
the first, since dimg, (D ® 4 Z;) = dima(D) is generally much smaller than
dilﬂz2 (D) . ‘

We will not discuss the nonconnected case any further in this paper.

3 Products

There are two sorts of products in Ezt which we could use to make H(A)
an algebra and H(M) an H(A)-module. One is the external product

E.ItA(M, k) [o24] ExtA(k,k) — EItAQA(M, k)

induced by the tensor product of modules, and its internalization by pull-
back along the coproduct A — A ® A, when A is a Hopf algebra. However,
this is of little help when A is not a Hopf algebra. Also, it presents com-
putational problems because of the size of the tensor product complex: if
C and D strain memory capacity separately, then C ® D is completely out
of reach. The other possibility, Yoneda’s composition product

E:BtA(M, k) ® EItA(k,k) — E:I:tA(M,k)

suffers neither of these restrictions. In fact, it is vastly more efficient in
memory use, since for long stretches of the computation, only a single

6

filtration of each of C and D is needed. Thus, it is efficient to keep in
memory only those differentials for the filtrations currently of interest. An-
other advantage is that we may easily restrict attention to the action on
indecomposables using the Yoneda definition, a task which is less naturally
accomplished using the tensor product.

In fact, there are two versions of Yoneda’s composition product. The one
we will not use views Ezt as equivalence classes of extensions. The one we
want uses the isomorphism between Ezt’(M,k) and the chain homotopy
classes of degree s chain maps from D to C, where D and C are free
resolutions of M and k respectively.

In these terms, the product is just composition of chain maps. In terms
of representative cocycles, [y][z] = [yZ;s+s], Where [z] denotes the cohomol-
ogy class of the cocycle z.

C<-—:I\J¢-~D04—

— D, +« - «— Dy
n
/ l 2 i-"":'sﬂ'
k «— Cp + - «— Cy
ly
k

In the following lemma we translate this into terms suitable for mechan-
ical calculation. If g € D, let g* : D, — k be the cochain dual to g with
respect to a fixed k-basis {a;g;} of D, where {g;} is an A-basis of D and
{a;} is a k-basis of A. If y : D, — k is a cocycle (e.g., y = g} for some 1),
then it can be lifted to a chain map §: D — C.

Lemma 3.1 If {h;} and {g;} are A-bases of the minimal free resolutions
C and D, then

hig; = Zg: hi (95 (9))e"

summing over all g of the correct homological degree. That 1s, the coefficient
of g* in hg; is the coefficient of h; in g;(g).

Thus, the entire H(A) action on the element g; can be seen by inspecting
the chain map :(;f

In fact, with a bit of care in setting up d : C; — Cj, the action of H*(A4)
can already be seen in the differential of D. Let I be the augmentation ideal

of A, and choose {a;} C I so that {a; + I*} is a k-basis for I/I*. Let {a}}
be a k-basis for I2. Then let us take {1} U {a;} U {a}} as our k-basis of A.

Since C is minimal, Cy = A generated by 1, and C; is free over A on a set
{h:} = {a;}. We may assume that d(h;) = a; (mod I*).

Lemma 3.2 hiz* = (a;z)*d. That is, the coefficient of g* in hiz* is the
coefficient of a;z in d(g).

Proof: The k-linear (but not A-linear) maps a} and (a;z)* satisfy h} = a}d -
and a} (5;), = (a;z)*. Therefore,

hat = B(F)en
ald(z*) 41

—~

= gli{zt).d

1

= (a,-z:)*d.

Il

We compute the chain map g* induced by a cocycle g* in exactly the
same way we would prove such a lift exists. The algorithm follows.

(Let g € Ext®t'))

For g, € Ext*
if g, = g then g*(g;) == 1
else g*(g1) := 0;
For s =1to o
For t = conn(D,;y) to maxt(s) begin
compute Image(d : Cy — Coo14);
For g, € Ext*t*'** begin
z =0
dz := g*(diff (g,));
Reduce (z, dz) against Image;
E:(Ql) =T
end {g:};
end {t};
end {s}.

To compute the image, we use the same loop as in the homology pro-
gram, so we have abbreviated it here. Note that in order to compute g* on

D,;, we must have already computed it on D,_;, and hence on D,_;,, for
t; < t. Any ordering of the computation which ensures this will be correct.
However, the order we have used has the advantage that for each s, the only
differentials needed are those on D,y and C,, and the only values of g*
needed are those on D,_;. This cuts memory requirements at a very minor
I/O cost: we read in the differentials we need at the beginning of each s
loop, and purge the values no longer needed at the end. In the homology
program, the fact that we also have to compute the kernel of the differential
forces us to vary s faster than ¢, making this kind of saving impossible.

4 'Toda brackets

If we compute products as Yoneda composites of chain maps, it is natural
to replace Massey products by Toda brackets. To get the signs right with
a minimum of clutter, we find the following conjugation operation useful.

Definition 4.1 If ¢ : W — X 1is a degree s homomorphism of graded A-
modules (c; : W; — X;_,), let T: W — X be the homomorphism with ™"
component (¢); = (—1)%c;.

Clearly conjugation is linear in ¢ and is its own inverse. Also, one can
quickly verify that
ab = ab = (—1)%9()gp,

Thus, a is a chain map iff its conjugate is an “anti-chain map”:
da = ad <= da = —ad.
Similarly, for a chain null-homotopy z: a ~ 0,
dz +zd =a < dT —Td =a.

It follows that two null-homotopies of the same map differ by the conjugate
of a chain map:

dz+zd=dy +yd <= d(z —y) = (z — y)d.

Definition 4.2 The suspension W of a chain complex W has (EW); =
W;_1 and the same differential as W. The mapping cylinder C(c) of a chain
map ¢ : W — X of degree s is the complez with i** component C(c); =
X; & W;_,_1 and differential
d ©
(2):

The natural inclusion ¢ : X — C(¢) and projection 7 : C(c) — LW are
chain maps, and

Wt X'ty 0fc)-Ls W
is a cofibration sequence.

Definition 4.3 F W -% X o, Y % Z are chain maps, the Toda
bracket < a,b,c > is the set of all chain maps T such that the following

diagram homotopy commutes for some chain map H.

w -t o x by & gz
Ni: TH TT
Cle) = =w

Proposition 4.4
(1) <a,b,c>={T|T = aj — 2 where ' ~b, z:ab' ~0
and y : b'c ~ 0}.

(2) <a,b,e>={T'|T =~ oy — zT where z:ab =0 and y : bc =~ 0}.

(3) <a,b,c> depends only on the homotopy classes of a, b, and c.

(4) Up to chain homotopy, the indeterminacy {f—g | f,g € <a,b,c>}
is a[W, Y] + [X, Z]c, where [—,—| denotes the set of chain
homomorphisms.

Proof: (1) First, suppose given chain maps H and T, and homotopies

A:Hi~band p:Tw =~ aH. Write H = (V',7) and p = (—z,¢). Then we
find that A : ' ~ b, that

H is a chain map <= b’ is a chain map and y: ¢ ~ 0,

10

and that
p:Tn~aH <> z:ab ~0and ¢:T ~ ay — zC.

Conversely, if A : o' ~ b and y : b'c ~ 0 then H = (',7) is a chain map
and A : Hi ~ b. If, in addition, z : ab' ~ 0 then a¥y — z¢ is a chain map.
Finally, if ¢ : T =~ a¥ — 2%, then (—z,¢) : Tm ~ aH.

(2) Suppose give A, z, and y as in (1). Then y — Ac : bc =~ 0 and

z —a) : ab ~ 0. Thus, a(y — Ac) — (z — aA)T is in the right hand side of
(2). But a§ — 2t = a(y — Ac) — (z — aA)c so (1) and (2) agree.
(3) For b, this follows from (1). For a, suppose A : a' ~ a, z: ab ~ 0,

and y: bc~0. Thenz+ Ab:a'b~0, so
ay— (z+ Ab)t € <a',b,c> and ay— ¢ € <a,b,c>,

and the map A7 is a chain homotopy between these. Similarly, if A : ¢’ ~ ¢,
then zX is the chain homotopy we need.

(4) By (2) we may assume f ~ aF — z€ and g ~ a¥y — z,¢, where z and
z; are null homotopies of ab, and y and y; are null homotopies of b¢c. Then

f-g9 = -1 - (z—z)°

= a(y=v1) + (-1)*"(E==)c

which, by the observation preceding Definition 4.2, has the form claimed.

This description is rather extravagant computationally. We do not need
the entire chain map defining the Toda bracket, only the cocycle it lifts.
This is expressed by the following corollary.

Corollary 4.5 Let a be a cocycle and a: Y — Z a chain map covering a.

Let W -5 X —b> Y be chain maps. If y : bc =~ 0 then the map ay 1s a
cocycle representing an element of <a,b,c> . Thus, the coefficient of g* in
<a,b,c> ts the coefficient of a in Y(g).

Proof: The component of the null-homotopy z : @b ~ 0 which maps into
Zy is 0. Therefore, the cocycle corresponding to the chain map ay — zt is
ay.

Thus, computing a null-homotopy of be gives us all Toda brackets of
the form <a,b,¢> . This is particularly useful in computing periodicity

11

operators in the cohomology of the Steenrod algebra and its subalgebras
since they can be expressed as

Prlx)e i hgn, P

At first glance, this Corollary appears to say that the null homotopy of
ab is irrelevant and only that of bc matters. However, the asymmetry is
more apparent than real. The homomorphism &7 is not a chain map, and
in order to lift the cocycle a¥ to a chain map we have to subtract z¢ from
ay. Thus, the complementary term z¢ is implicit in the cocycle which we
have shown represents the Toda bracket.

As in the case of products, elements of H!(A) have special behaviour
which reduces the amount of computation needed to find Toda brackets
involving them. Retain the assumptions made preceding Lemma 3.2 about
d: Cy — Cy and recall that d(h;) = a; (mod I?).

Corollary 4.6 < Ef,g*,c> = (a;b)*c. That s, the coefficient of ¢* in
<h;,b*,c> is the coefficient of a;b in T(g).

Proof: We use the preceding Corollary and the same k-linear maps as in
the corresponding result for products:

R!T = a}dg = a}b*c = (a;d)"c,

where the middle equality follows from the general formula dy = 3d + b
and the fact that the component of ¥ mapping into Cj is 0.

The algorithm for calculating a null-homotopy y of b*¢* is not signifi-
cantly different than the algorithm for computing an induced chain map.
We initialize the calculation by setting y = 0 on Dy ,n_;, where s' = deg(b)
and s" = deg(c), and then proceed to lift 6*¢* — yd over the differentials
d:Cy — Cs-—l,t-

5 Representation of the algebra

We assume given an ordered k basis {a;} for A such that each degrree is
linearly ordered (and hence, well ordered, since A has finite type). In terms
of this basis, there are two natural representations for the elements of A:

S 12

sparse case an ordered list ((k;, a;;) (ki, ai,) ...) of the nonzero terms,
and

dense case a vector (k; k; ...) of the coefficients for all the basis elements
in the degree under consideration.

Whichever of these representations we use, the operations that we need to
perform are:

1. produce the basis for a given degree,
2. compare elements to determine which has the higher highest term,

3. add and subtract elememts,

i

multiply elements.

We find it convenient to deal with the two cases (sparse and dense) sepa-
rately. We have used both in our calculations involving the mod 2 Steenrod
algebra, and have found the density of nonzero coefficients in the minimal
resolutions we have constructed such that the dense representation uses
roughly 1/4 the storage of the sparse representation. In general, the dense
case representation is more compact iff jd < CN, where

J is the number of bits per coefficient in the dense representation,
d is dimyA,,, where n is the degree in question,

C is the average number of nonzero coefficients in the algebra elements
under consideration, and

N is the number of bits required to hold a coefficient and an identifier for
a basis element of A, in the sparse case.

Clearly C will be difficult to compute exactly and will have to be estimated.
Also, the sparse representation can be made more efficient in its use of space
by reducing N, but this may make everything else more difficult.

13

5.1 The dense case

It is trivial to produce the vector representations of the basis elements, if
we know the dimension of the algebra in the degree of interest. They are
(60,0550 0: 15 B o), s

Comnparison for order is similarly easy, since the highest term is the last
one with a nonzero coefficient. In our current implementation, we have an
order preserving function which assigns to an element an integer identifying
the last nonzero coefficient. With each entry (a,da) in Image we also store
the integer identifying the highest coefficient of da. Then Reduce only has
to search dz to determine whether to replace (z,dz) by (z — a,dz — da),
to look at the next entry in Image, or to terminate the search. Note that
after replacing (z,dz) by (z — a,dz — da), the highest operation decreases,
so the search for it can start at the old highest operation, rather than at
the end.

Addition (and subtraction) are somewhat different for k¥ = Z; and for
'k = Z,, p > 2. When p = 2, the vector of coefficients is a sequence of
bits, and addition is exclusive-or of these bitstrings. This can generally
be accomplished in comparatively few instructions even for long bitstrings.
When p > 2, if we allow each coefficient one bit more than it must have,
i.e. n bits, where 2" < p < 2”1, then we may pack these into words (16,
32 or 64 bits typically) and add without danger of “interference” between
adjacent coefficients. Adding (2"' — p, 2" — p, ...) then causes the
leftmost bit to reflect the need (or lack of it) for reduction mod p in that
coefficient, which may then be carried out a word at a time by a short
sequence of logical and arithmetic operations.

Multiplication is the most difficult operation in this representation.
Note that, aside from needing to know dim; A, for each n, the first three
operations are perfectly generic. The multiplication routine is the oppo-
site: it is completely specific to the algebra. In order to implement it, we
find that we alter the way in which the first three operations are carried
out somewhat. By linearity, it is suficient to be able to multiply basis ele-
ments. Typically, to multiply a; and a;, given only 7 and 7, we must first
produce some more intrinsic representation of a; and a; than their sequence
numbers ¢ and j. We then apply the multiplication routine specific to the
algebra to those intrinsic representations. We generally receive the answer

14

in intrinsic terms, which must then be converted back into sequence num-
bers. In principle then, we must be able to compute Opno(i), the intrinsic
representation of a;, and Segno(op), the sequence number of the intrinsic
representation op. In practice, a; and a; are not randomly distributed, so
we take a slightly different approach. In the cohomology program, a; is be-
ing stepped through the entire basis for its degree, one element at a time,
while a; runs through the nonzero terms of some element. In the products
and Toda brackets programs, both a; and a; run through the nonzero terms
of an element. Thus the functions we use are

Firstop(n), which produces the intrinsic representation of the first oper-
ation of degree n,

Nextop(op), which produces the intrinsic form of the successor to op, and

Advance(op,k), which produces the intrinsic form of the operation k
steps beyond op.

We use Firstop and Nezxtop to produce each basis element in a given degree.
We use Advance to skip through an element’s nonzero terms, since it is
usually faster to produce the intrinsic form of a term from that of the
preceding nonzero term, than to produce it from the sequence number.
Depending on the algebra, we may define one of Neztop and Advance in
terms of the other. '

For the transformation from intrinsic form to sequence number, we use

Seqno(op) = sequence number of the basis element with intrinsic repre-
sentation op, and

Rseqno(op;,0p;) = Segno(op;) — Seqno(op;).

(of course, for efficiency, we probably will not compute Rseqno by this
formula.) The point of Rsegno is that, for the Steenrod algebra at least,
and certainly in many other cases, it is possible to devise the multiplication
routine so that it produces the terms in its answer in roughly ascending
order. If we already know the sequence number of the preceding operation,
it may be quite a bit faster to compute only the relative sequence number
of the next term and add, rather than compute its sequence number from
scratch.

15

5.2 The sparse case

Here we must assign an identifier, which we take to be an integer, to each
a;. It is convenient to use a “packed” version of the intrinsic form for speed
of conversion in the multiplication routine.

We order {a;} by numerical order of their identifiers. Of course, we will
try to arrange the packed version so that this coincides with an ordering
that makes sense for the algebra. For example, with the mod 2 Steenrod
algebra’s monomial basis {¢]*¢7%... &"}, we use the identifier

Pack(ry, r2, ..,rn) =11+ 28(?'2 + 27(1'3 + 26(1-4 + 24(7'5 + 23(1"3 + 227'7))))),

which is easily computed by a sequence of shift operations. Numerical order
of the packed forms then coincides with reverse lexicographic ordering of
the monomials based on the ordering & < & < ... of generators. Note
that this function is only one-to-one through dimension 240, so will have
to be replaced if we ever exceed that dimension.

Of course, we also need the inverse function Unpack, which takes an
integer identifier and produces the corresponding intrinsic form of the basis
element.

To produce the basis for a given degree, the operations Firstop(n) and
Neztop(op) composed with Pack will work fine. Note that Nextop must
return some indication when its argument is the last basis element in its
degree. '

Comparison of elements is just lexicographic order of lists based on the
standard order for the integers:

(f1e2 ...)<(h 2 ...) =i <jror (41 =7 and (33 ...) < (%2 sncizf e

Addition (or subtraction) is a kind of merge with cancellations, since
the lists are presumed ordered: we perform a merge of the identifiers t; and
¢; of the lists

(ki) (ki)) and (K) (K 43) -..)
where k;, ki € Z, and 7; <13 <---,and ¢} <1} < ---, adding coefficients

when the same identifier occurs in both, and eliminating the term if the
sum of the coefficients is 0. When k = Z, we omit the coefficients ;,

16

naturally, and eliminate terms which occur in both lists (we’re computing
the symmetric difference of sets in this case).

Multiplication is slightly simpler than in the dense case. We simply
pass through the list, unpacking each item in order to multiply. The basis
elements making up the product are packed and inserted in order into the
list making up the sum so far. Note that the efficiency of this last insertion
is enhanced if we can arrange the multiplication routine to produce its
results in order, or in reverse order, depending upon the precise method we
use to store lists. If we use a LISP style arrangement

Lin]l =l =eelin |/

then reverse order is best, since each insertion requires only 1 comparison
to verify that it goes at the front. If we use contigous allocation,

!

iy

in

increasing order is probably best, because insertion at the end is most
efficient. (Insertion anywhere else requires copying whatever follows.)

5.3 Polynomial and Copolynomial algebras

Note that if A or the dual of A is a polynomial algebra then the manip-
ulation of the basis elements consists of standard operations on weighted
partitions. In particular, this is the case for the Steenrod algebra and its
subalgebras. ‘

17

6 Representation of modules

6.1 Free modules

The modules which make up the resolution are free, so are especially easy
to represent. If {h;} is a well-ordered A-basis for the free A-module C, then
we represent elements of C' by ordered lists ((opy hi;) (op2 hi,) ...), where
hi, < h;, < ... and the op; are algebra elements (not just basis elements)
represented as in the previous section. Such a list represents the obvious
sum - op;h;,.

Addition of such elements is essentially the same as addition of algebra
elements in the sparse representation. To act on such an element by an
element of the algebra is just the obvious bilinear extension of the multi-
plication of algebra elements.

6.2 General modules

The module being resolved is defined to the programs by two routines: one
writes a k-basis for a specified degree of the module on the file which holds
Newker, and the other returns the result of letting a basis element of the
algebra act on an element of the module.

We represent all module elements in the same format as free module
elements since this means that the same addition routines and I/O routines
can be used. Conceptually, this amounts to representing a module as a
quotient of a free module. The routine which gives a k-basis for the module
is equivalent to giving a k splitting of the quotient homomorphism.

A general technique is to represent the module M as the quotient of the
free A module on a k basis {m;} of M. Each module element then has a
canonical form ((1 my,) (1 m;;) ...), where 1 is the identity element of A.
To define the action of A on M then requires that we specify the elements
a;m; in this form, for each a; in the k basis of A.

6.3 Special cyclic modules

Cyclic modules which are at most one dimensional (over k) in each degree,
can be represented in a much simpler fashion, as quotients of A. If m is the

18

generator of the module, then to define the k basis for degree t + deg(m)
of the module, we need only specify a basis element a;, of A such that
a;,;m # 0. To define the action of A on M, we give, for each degree t,
the projection A; — k defined by letting A; act on m and recording the
coefficient of the result. When k = Z, this is a bitstring of length dimy A4;.
Then, to compute a; acting on ((op m)) we compute the product a; * op
and apply the projection. When k = Z,, this consists of a logical-and
of the bitstring.representing the product and the bitstring representing
the projection, followed by counting (mod 2) the number of nonzero bits.
The result is then the result of the projection times ((a;, m)), where ¢' =

deg(op) + deg(a;).

7 Data structures

We have found that a single datatype, which we call a block, suffices for all
our dynamically allocated memory. It consists of an even number, say 2n,
of contiguous 4 byte words, which we think of as split into two half-words
(2 bytes each), followed by 2n — 1 full words. The first two bytes contain
either 2n — 1 or 2n — 2, reflecting the number of words of data following
the first word of the block. The second two bytes of the block (i.e., the last
half of the first word) also hold data, generally of a different nature than
the data held in the full words. We generally call these two bytes the key,
and the first two bytes, the length.

L=2n-2 L =2n-1
L |key | 1 L {key| 1
1 2 1 2
: : or
L
unused | 2n L 2n

The use of these blocks to represent lists has the advantage of keeping
elements of a list contiguous, speeding access (via binary search or hashing)
and allowing the use of machine operations which act on large blocks of
memory. Of course, it also introduces the need for memory management
which we discuss below, and means that inserting elements into the middle

19

of lists requires some copying.

We use a single block to represent an element of the algebra, in either
the sparse form or the dense form. In the sparse form, each word of the
block holds an identifier for a basis element. In the dense form, the words
in the block are thought of as one long string of bits. In either case the
key field is not used by the algebra element. Instead, it is used to hold an
identifier for a module generator, so that a block can represent a term of
the form op % gen. -

To represent an element of a module, we use a block whose entries
are themselves (pointers to) blocks representing terms op * gen as just
described. The key of the main block is set equal to the internal degree of
the module element. Thus, the structure

len |deg represents the element
. D 0p; * gen;
¢ ' — | len; |gen,~ 3
= of degree deg.

The lists Ezt® of generators for the resolution in cohomological degree s
are examples of lists which need to be able to grow. To keep such lists in a
single block without having to recopy them each time an element is added,
we use a block whose length field is the full length 2n — 1 of the block, while
the key field is set to the actual data length of the block. When the block
is full, we copy it into a new block with some room to spare for expansion.

We store Image as a block whose ** entry is itself a block holding the list
of (a,da) entries with highest generator of da equal to the i** generator in
Ezt*~!, Thus, Image is a block whose length is the same as the data length
of Ezt*~!. When we are reducing (z,dz), we find the highest generator gen
of dz in Ezt*~! by binary search, and look at the block located at the
corresponding position in Image. This block is an expandable block, each
entry of which corresponds to an (a,da) pair, with the entries arranged in
increasing order of the highest operation hop on gen. Thus, another binary
search determines whether or not Image contains an (a,da) pair whose
highest term hop * gen agrees with the highest term of dz. Each (a,da)

20

pair is stored in a block of length 3, along with the disk address addr at
which a and da were written, and an identifier hop for the highest operation
in da, so that we may compare it to the highest operation of dz without
having to look at da. This is primarily important if the pair (a,da) has
been paged out, since it means we may determine whether or not we need
(a,da) to reduce (z,dz) without having to read (a,da) back in. Thus, we
will not read it back in unless we actually need it.

Ext*1 Image
len }dlen dlen Idlen
i) gen [len; [dlen;
dlen JE€NGlen _',.
unused 3 |h,op
a
da
addr

Organizing Image in this way has two significant beneficial effects.
First, searching Image for an (a,da) pair with highest term the same as
the highest term of (z, dz) is faster because, when one is found, and (z, dz)
is replaced by (z — a,dz — da), we can continue our search inside the sub-
block if the highest generator is not changed, and we can immediately skip
the rest of the subblock if it is. Second, when a new (a,da) entry is to be
inserted, only the part of the subblock following it has to be moved down.
This can significantly reduce the amount of copying necessary.

The only other dynamically allocated data structures needed are Newker
and Oldker. Since these are generated and used in one sequential pass, they
are simply written on and read from sequential files.

8 Memory management

We maintain a free list of unused blocks in order of address. This permits
amalgamation of adjacent free blocks. We allocate space from this list by
first fit; that is, the block requested is carved from the first block large

21

enough to hold it and the remainder (if any) is left in place. An exact
length or a range of acceptable lengths can be requested. The latter form
is used for lists that will expand (such as Exzt®) and for blocks that are likely
to soon have a piece removed from the end. For example, in computing the
sum of elements of lengths 7 and 5, we request a block of length ¢+ 5 to hold
the sum. However, cancellations may mean that the sum will have fewer
than 7 + 7 entries and the remainder of the block will have to be freed.
Thus, if a block of length 7 + 7 + 2 is available, it makes more sense to take
all of it than to chop off two words now, then perhaps chop off a few more
momentarily, especially since they will likely have to be reattached to the
two originally removed.

A block in the free list must contain at least two words in order to hold
its length information and the address of its successor. Blocks are allocated
in multiples of 2 words to ensure this.

Free: — len | i

—* lenl?

=t BEE =5 lenl?

0

If less than an entire block is being returned, it is taken from the end
of the first large enough block. In this way, no pointers in the free list have
to be changed.

Our original memory allocation system also maintained separate lists of
common size blocks. This eliminated the need to search the free list when
a block of such a size was requested, and eliminated the need to chop larger
blocks into pieces. However, it increased fragmentation to such an extent
that it was counterproductive. (Segregating the free blocks into separate
lists of different sizes eliminated much of the amalgamation that takes place
when all the blocks are in the same free list.)

To improve locality, a region called the clear area is maintained. Ini-
tially, the free list is empty and the clear area consists of all space allocated
for blocks. If a request for a new block cannot be granted from the free
list, the allocation routine checks to see if it can be granted from the clear

22

area. If so, the requested amount of space is taken from there. Similarly,
if a block located on the edge of the clear area is freed, the clear area is
expanded to include it, instead of adding it to the free list. A similar ef-
fect could be achieved by taking small blocks from the beginning rather
than the end of oversize blocks, or by ordering the free list in reverse order.
However, with only 16 bits for the length field of the block, we are limited
to blocks whose length is 64K words, quite a bit less than the initial size of
memory requested for some computations, which would force us to begin
by carving it into pieces. If memory were requested from the operating sys-
tem in 64K word (or smaller) segments, this latter method of encouraging
locality would be the method of choice.

When space for a new block is requested and no space is available, we
begin paging out parts of I'mage, since this is what uses most of memory.
The scheme we have adopted is rather crude but effective. We remove from
memory the last 1/4 of the entries in each of Image’s subblocks. More
precisely, we remove a and da but keep the block containing hop, addr and
space to put pointers to a and da if they are returned to memory. If that
is sufficient, we stop there. If not, we remove the 1/4 before that, etc. An
entry is returned to memory only when it is again needed. This works as
well as it does largely because we have also arranged to produce elements
in reverse order, so that their position in Image can be rapidly established.
We should also point out that when we remove an entry from memory, no
I/0 is required because every entry is written out as it is generated, and
will never change. Thus, only half of the I/O cost commonly associated
with paging is incurred. :

Finally, if the algebra is actually finite dimensional, not just of finite
type, we remove differentials that can no longer contribute to the calcu-
lation. (If we have reached internal degree ¢, and the algebra is 0 above
degree t' then differentials of elements in degrees less than ¢ — ¢ can have
no further effect.)

9 I/O

Module elements have a linear form which consists of the first word of their
main block, containing their length and degree, followed by the contents of

their subblocks, in order. When writing a block of odd total length, i.e.,
even data length, the unused last word is omitted. Writing this to a file
is elementary. Similarly, reading it is easy. The first word tells us the size
block to allocate and the number of further blocks to read. For each of
those, the first word we read tells us how many more words we need to
read.

The files holding Oldker and Newker consist of a header identifying
the bidegree for which it is the kernel, following by a stream of elements
spanning the kernels linearized in the above fashion. The end is indicated
by an element of length 0. At the end of the computation for each bidegree
the files holding Oldker and Newker swap roles.

The other files we use are all random access files. These are

Diff which holds the differentials defining a resolutiom,

Map which holds the chain maps lifting cocycles corresponding to a set of
generators of a particular homological degree,

Image which holds the image of the differential d : C,; — C,_;; while that
image is in use.

Each of these contains a header that tells
e the number of words in the file,

o the number of words in the header (allowing for a variable length
description of the file located between this header and the main body),

o the last bidegree completed,
¢ the module(s) involved, and
e (optional) text describing the contents of the file.

In addition, the header for a Map file gives the number n, homological
degree s, and identifiers gi,...,g, of the generators of D whose induced
chain maps Ef : Dy, g — Cy are contained in thr file.

Following the header, the file is simply a sequence of individual entries.
In Diff the entries have the form (g, s, ¢, diff), where g is the identifier for a

24

generator of the resolution, s and ¢ are its homological and internal degrees,
and diff is the linearization of the differential on g. In Map the entries have
the form (1,9, elt), where elt is the linearization of Ef(g) In Image the
entries have the form (dz,z) where dz and z are the linearizations of the
two elements. We put dz first because in the second phase of the homology
calculation the z entries are no longer needed. Thus, if we need to page dz
back in, its address is the same as the address of the pair.
The functions needed to carry out the I/O are

e Read or Write the linearization of an element at the current position
in a sequential (kernel) file,

e Rewind a sequential file,

e Read or Write the linearization of an element at a specified address in
a random access file, and report the address of the next word following
it, and

e Read or Write a vector of specified length at a specified address in a
random access file.

10 Results

The previous version (using the sparse representation of algebra elements)
was used to calculate a minimal resolution of the Steenrod algebra through
internal degree 69, together with the chain maps induced by indecompos-
ables in homological degrees 3 to 6 through this range.

With the current version of the program (using the dense representation
of algebra elements), we have computed

e a minimal resolution of the Steenrod algebra through internal degree
62,

e a minimal resolution of A(2), the subalgebra of the Steenrod algebra
generated by Sq', Sq?,and Sq¢*, through internal degree 90,

¢ minimal resolutions for H*(RP> /R P"1) over A(2),forn =1,3,5,7,
through internal degree n + 45,

25

e a minimal resolution for a cyclic A(2) submodule of H*(MO <8>),
through internal degree 80, and

e chain maps for indecomposables in low homological degrees for the
resolutions of A(2) and the submodule of H*(MO <8>).

Our next projects are to extend the calculation of the minimal resolution
of the Steenrod algebra and compute all products and many Toda brackets
in it, to calculate a minimal resolution of A(3), to calculate minimal reso-
lutions for some modules over the Steenrod algebra of interest in our other
work, and to calculate minimal resolutions of the Steenrod algebra for the
primes 3,5 and 7. By the time this appears, much of this will undoubtedly
have already been accomplished.

11 Acknowledgements

Professor Neil Rickert was helpful in innumerable ways, both in dealing
with the MVS and CMS systems, and in suggesting and discussing ways to
make the algorithms and data organization more efficient. This work was
also aided by the excellent computer facilities and staff at the University
of Illinois at Chicago. In particular, Dr. Nora Sabelli was always quick to
solve problems that arose.

I am also grateful to the Research Office and the Computer Center at
Wayne State University for funding.

Robert R. Bruner
Department of Mathematics
Wayne State University
Detroit, Michigan 48202
USA

26

